
AO080 410 AIR FORCE INST OF TC14 WRIS4T-PAYTERSON F A ON SCNOO-gC p 2TC
! B1RAPH 0EL REPRESENTATION OF A O R -C

IDEC 79 L A PALEADISTRIBTDPOESRCMUIECU
UNCLASIFI[O AITC/KEM-1 8 NL

INmllMN

EEEEEEEEn mmili ,NONE11 MENE

AFIT/GS/E79-17

A RAPH M ODEL REPRESENTATION'I

LOF A ISTRIBUTED ;ROCESSOR

-jMUE ___,'SE

THESIS

AFITICCS/EE/79-12 L esl~e A. alme~r

2Lt AF

F)I D

Ap r''d lot puhh :;i',,

/ Distibution Unlimited

AFIT/GCS/EE/79-12

A GRAPH MODEL REPRESENTATION OF A

DISTRIBUTED PROCESSOR COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Leslie A. Palmer

2Lt USAF

Graduate Electrical Engineering

December 1979

Approved for public release; distribution unlimited

-9.

Preface

Although a lot of theory about graph models has been

developed, relatively little work has been directed to the

application of graph model techniques. This report describes

the development of a graph model representation of the Digital

Avionics Information System (DAIS), a distributed processor

computer architecture. The class of graph models used in this

investigation are known as Evaluation nets. Evaluation nets

were developed by Dr. Gary Nutt and are one of the few graph

model classes developed specifically to support computer system

performance analysis efforts.

Thanks are due to Capt. Walt Seward who sponsored this

investigation. Dr. Gary Lamont was most helpful as my advisor,

providing guidance and helping solve some difficult problems

during model construction. Special thanks are due to Delores

Lamont who spent many long nights at her typewriter preparing

the final copy of this report. Most of all, I am forever

grateful to my wife, Linda. Without her personal sacrifices

and continual encouragement, I would not have completed this

project.

m
A

.... .. L ...

---1- I• I I . .
V. _= .I l i

I Contents

Preface ii

List of Figures .. v

Abstract vi

List of Abbreviations vii

I. Introduction I

DAIS 2
Graph Models.......................o......... 2
Problem Statement 7
Scope .. 8
Constraints and Assumptions 8
Approach............................. 9
Organization 9

II. Background ... 10

DAIS ... 10
DAIS Concept 11
General Description
Architecture 14
Software 19
Executive 19
Applications Software 23
Normal Operation 27

Bus Control - 28
Task Control 30

Summary 34
Evaluation Nets 36

Basic Definition 38
Net Flow 46
Formal Evaluation Net Definition 49
Macro Structures 61
Summaryoo...... 65

III. Model Construction 67

Prefatory Activities........................... 67
What to Model ,........... 67

Level of Detail o 69
Model Requirements......................... 69

VW - I
" l t

Model Development 70
Top Level Model 71
Intermediate Level Model 75
Task Level Model 80

Model Validation 91
Summary 92

IV. Evaluation of Models 93

Structural Analysis 93
Dynamic Analysis 96

Direct Interpretation 96
Simulation 98

Summary ... 99

V. Results and Conclusions 100

Results .. 100
Conclusions 101
Recommendations for Future Work 101

Bibliography .. 103

Apperdix A: BNF Notation 106

Appendix B: Definition of the Intermediate Level E-Net
Graph of the DAIS 107

Appendix C: Definition of the Task Level E-Net Graph
of the DAIS 113

Appendix D: Token Flow in the Task Level E-Net Graph
of the DAIS 136

iv

lo ja

List of Figures

Figure Page

1 Parallel Net Model. 5

2 DAIS Functional Block Diagram 13

3 DAIS Architecture 15

4 Bus Control Interface Unit 16

5 Remote Terminal Unit 18

6 Executive Functions 21

7 Executive Physical Breakdown 22

8 Hierarchical Control Structure 25

9 Application Software Tree 26

10 Task State Transition Diagram 31

11 Simple E-Net 37

12 Basic Transition Types 41

13 E-Net Graph of Simple System 44

14 Priority-In Queue of Length Four 63

15 Priority-In Queue 65

16 High Level E-Net Graph of the DAIS 72

17 Intermediate Level E-Net Graph of the DAIS 76

18 Task Level E-Net Graph of the DAIS 81

19 Top Down Model Construction Overview 95

v

" - I.

* Abstract

Three evaluation net graph models of the Digital Avionics

Information System (DAIS) were constructed. The three models

represent three increasingly lower levels of detail; the third

model represents the DAIS at a task flow level of detail. The

models are evaluated as analysis tools. Methods are presented

for analyzing the DAIS structure and performance and examples

are given. The biggest problem associated with a performance

analysis using evaluation nets is the recording of data

collected during model analysis. A solution to the data

recording problem is to utilize data automation techniques.

vS.

Vi.

List of Abbreviations

BCIU Bus Control Interface Unit

BCM Bus Control Module

DAIS Digital Avionics Information System

DMA Direct Memory Access

E-net Evaluation net

MTU Multiplex Terminal Unit

PIM Processor Interface Module

PIO Programmed Input/Output

r-location Resolution location

RT Remote Terminal

vii

__-" _

A GRAPH MODEL REPRESENTATION OF A

DISTRIBUTED PROCESSOR COMPUTER SYSTEM

I Introduction

\ very computer system is designed to perform a certain

function or set of functions. Whether or not a system per-

forms its function(s) and, so, how well does the system

perform its function(s) e questions which lead to a perform-

ance evaluation effort. The most accurate way to evaluate a

system's performance is to measure the system under its real

workload (Ref 32:19). Very often, though, it is not feasible

or practical to measure an existing system (Ref 5:12). When

the system to be analyzed is not available for direct analysis,

a model of the system can serve as the subject of analysis.

Even if the system is available, there are many possi advan-

tages of analyzing models of e real systems, such as

Sost efecat±tv 7, flexibility, and forecasting (Ref 12:10-11).

This investigation focuses on the use of a particular class of

graph models, known as Evalvation-Nets, to model a distributed

processor computer system in support of a performance analysis

effort.

- -

I .4.

DAIS

The Digital Avionics Information System (DAIS) is a dis-

tributed processor computer system developed for the Air Force

to simulate avionics computer systems. Located at the

Avionics Lab, Wright-Patterson Air Force Base, Ohio, the pri-

mary mission of the DAIS is to provide a host computer system

on which to test and evaluate new or changes to existing avi-

onics computer systems (Ref 33:1). The DAIS provides suft-

ficient modularity and redundancy to allow a user to simulate

all or a subset of the avionics computer system's functions

(navigation, target acquisition, flight plan, on-board stores,

etc.). Sensors, analog devices, weapons, and displays can be

connected to the DAIS via a standardized multiplexed data

bus system, MIL-STO-1553A (Ref 10,30,31).

At the time of this investigation, the DAIS has not yet

been fully implemented (PDP-11/40 computers are being used to

simulate AN/AYK-15 avionics processors and a DEC-10 computer

system is being used to simulate the rest of the DAIS system

and DAIS environment). For a general description of the DAIS,

the reader is directed to Chapter II of this report. For a de-

tailed description of the DAIS, the reader is referred to

References 1,2,3,9,18,23, and 25.

Graph Models

A functional model describes how a system operates and can

be used to derive a performance model in support of a perfor-

(mance analysis. Liba Svobodova (Ref 32) defines four classes

2

of functional models: flowchart models, parallel nets, finite-

state models and queueing models (32:31). The first three

classes are types of directed graph models in which, generally,

nodes represent tasks and arcs represent flow of control.

Flowchart models, as the name implies, are derived from

functional flowcharts and pictorally represent the computation-

al tasks of a system. Given the execution time of the tasks

and the probability of following different arcs, a simulation

of system execution can be effected and analyzed. However,

since Flowchart models do not provide the capability to repre-

sent amounts and types of resources or the scheduling of these

resources, Flowchart models cannot be used to represent a total

system, but only the programs executed by the processor

(Ref 32:31).

Nodes represent states of the system and arcs represent

transitions between states in a finite-state model (Ref 32:32).

Since a system state is defined by the states of the system

components, parallel processing can be represented in a finite-

state model. At the task level, though, the number of possible

states of the system can be a large number. For example, in

the DAIS system, a task can be in any one of six states and

there are three general classes of tasks. For a two processor,

two channel DAIS simulation, a finite-state model of

(6 x 3 x 24) = 288 nodes would be required. (Addition of

just one more processor and channel requires a model with over

4600 nodes!) The point here is that finite-state models are

useful for high level analysis of a system, but may be quite

complex and unwieldy at adetailed task level.

Parallel nets are directed graphs with two types of

nodes, transitions and places (Ref 32:32). Places represent

the conditions which must be satisfied for a transition to be

enabled. Transitions represent events which, when enabled,

may occur. Tokens are markers on places which indicate

whether or not the corresponding conditions are satisfied

(a place with a token represents a satisfied condition).

Places are only connected to transitions, and transitions are

only connected to places, via arcs. Since several transitions

may be enabled simultaneously and independently, parallel nets

may describe concurrent, asynchronous processing (as in the

DAIS). A simple parallel net model is shown in Figure 1. A

token, represented by the solid black dot, resides on place

P3. This is interpreted as "CPU busy", and transition t2 is

enabled. When transition t2 fires, t removes a token from P3

and places a token on each of the places P4 and P1 (transition

t is now enabled).

Petri nets, Timed Petri nets, Colored Petri nets, and

Evaluation nets are four classes of directed graph models

that fall into Svobodova's parallel net category of func-

tional models. Petri nets were used to derive the latter

three classes of graph models just mentioned. Figure 1 could

be interpreted as a graph representation of a.Petri net.

Properties of Petri nets which make them useful for model-

(ing distributed processor systems are their concurrency or

~4

T .

1 t2

&P+ P3 1

P2 P4

* : token

PLACES

Pi : CPU idle

P2 : Request for CPU
P3 : CPU busy

P4 : task complete

TRANSITIONS

t : Allocate CPU

t2 : Deallocate CPU

Fig. 1 Parallel Net Model (Ref 32:33)

5

LI

parallelism and asynchronous nature (Ref 21:229). However,

some properties of Petri nets limit, if not prevent, the use

of Petri nets for performance analysis. Once a transition is

enabled in a Petri net, the only action guaranteed is that the

transition will fire within an unspecified but finite, future

time interval. In addition, the firing of the transition

takes zero time. Therefor it is not possible to specify how

much time is consumed by processes and actions in a system.

Also, the tokens used in Petri nets are simple markers which

can only be used to indicate whether a place is occupied or

not. If a token were allowed to take on values, or better yet,

a vector of values, then it could be differentiated from other

tokens. Such a token could represent a job and its vectored

requests for and uses of modeled systems resources as the token

moved about in the net.

Timed Petri nets (Ref 22) are an extension of Petri nets

which assign finite firing times to the transitions in a net

model. Timed Petri nets can be used to determine the compu-

tation rates of activities in a modeled system.

Colored Petri nets (Ref 34) do not assign finite firing

times to transition, but they do provide a means of resolving

conflicts related to priority of tasks. Tokens are assigned

colors which can be used to reflect token priorities when

there arises a conflict of several different typed (colors)

of tokens in an input place of a transition and one of these

tokens must be selected to enable the transition.

(Evaluation nets (Ref 15) incorporate both finite

6

'
• • a

V

transition firing times and tokens with vectors of values.

Evaluation nets (E-nets) were developed specifically for per-

formance evaluation studies, providing "a medium for graphic-

ally representing the structure of systems composed of

asynchronous events" (Ref 15:IC). In order to facilitate net

analysis, a special type of place was introduced, termed a

resolution location, which can be used to resolve conflicting

situations that may arise in the net (Ref 15:23). These

"resolution locations provide a deterministic method to resolve

the conflict whenever it does appear during a net operation"

(Ref 15:24) which is not available in the Petri net or Timed

Petri net models. For a general description of Evaluation

nets the reader may refer to Chapter II of this report. For

a detailed description and discussion of the development of

E-nets and their applications, refer to Reference 15.

Problem Statement

It is desired at the Air Force Avionics Lab at Wright-

Patterson AFB to have the ability to perform a high level

analysis of proposed avionics computer systems without having

to operate a real-time system (as will be done with the DAIS).

The aforementioned advantages of model analysis apply when a

model is compared to a real-time hardware simulation. The

purpose of this investigation is to construct a graph model of

the DAIS, a distributed processor avionics system, based on

the class of parallel net models known as Evaluation nets.

After the model is constructed, it will be evaluated as a tool

7

for analyzing the performance of a two processor DAIS con-

figuration.

Scope

The intent of this investigation is to use a particular

class of graph models to model a particular distributed pro-

cessor avionics computer system configuration in order to

analyze the system's performance. Evaluation nets were select-

ed because they provide the capabilities (conflict resolution,

transition execution times, and vectored, valued tokens) to

perform a realistic representation of system operation and

characteristics (concurrent, asynchronous processing).

Additionally, E-nets provide mechanisms for model-environment

communication (see Chapter II) which facilitate net model ex-

ecution. Since the distributed processor avionics systems

which the DAIS is intended to simulate do not exist yet, the

DAIS itself will be modeled. Analysis of the model can re-

veal any bottlenecks in the system and provide statistical

data on task assignment and execution.

Constraints and Assumptions

Constraints and assumptions are discussed together since

they are closely connected. Probably the biggest constraint

on the modeling effort was the unavailability of detailed doc-

umentation on the Master Executive. The Master Executive is

the part of the DAIS operating system responsible for overall

system control and data bus communications control. Many

8

assumptions concerning Master Executive functions were made

which cannot be verified or faulted until the said documenta-

tion is available (Ref 28.29). These assumptions are dis-

cussed in Chapter III, where they can be discussed in context

with their impact on the derived model.

Approach

The investigation proceeded in a top-down manner. Prior

to constructing any E-net graphs, a set of guidelines were

established. As of the writing of this report, only one con-

figuration has been simulated at the Avionics Lab, that being

a two-processor configuration of an attack aircraft avionics

computer system (Ref 19:24). This was the configuration chosen

for the E-net modeling effort.

Three E-net graph models were constructed which represent-

ed the functional relationship of the two processors, their

bus interface units, and the data bus. The three models repre-

sent successively greater levels of detail of the DAIS. The

third model represents the DAIS at a task level, and was eval-

uated as a tool for analyzing the DAIS.

Organization

Chapter II contains a general description of the DAIS and

Evaluation-nets. In Chapter III the E-net models are presented

with a discussion of the model construction effort. A discus-

sion of the analysis effort is presented in Chapter IV. Results

of the investigation and some condluding remarks evaluating this

(undertaking are presented in Chapter V. Finally, some recom-

mendations for future work are made.

9

II Background

A general description of the architecture and theory of

operation of the DAIS and an informal description of E-nets is

presented in this chapter. Enough detail on the DAIS is pre-

sented in this chapter to give the reader a basic understanding

of the DAIS structure and operation; more detailed discussions

of some portions of the architecture and operation are present-

ed in Chapter III to explain the configuration of some parts of

the E-net graphs presented there. Only a definition of E-nets

is presented in this chapter. For a formal discussion of the

development and underlying theory of E-nets and some examples

of their application to problems in the field of computer

science, the reader is referred to Reference 15.

DAIS

Generally, an avionics system is a collection of separate,

and usually dissimilar, specialized systems which communicate

through specialized interfaces. Each major avionics function

(e.g. navigation, communications, weapon delivery, flight con-

trol, and stores management) is supported by its own special-

ized computer system. A request for navigation data by the

flight control function necessitates a specialized interface

to support the data transfer. As can be imagined, there are

numerous dissimilar computer systems and interfaces being

maintained by the Air Force in support of the various aircraft

(and missions being flown.

10

!!Rpm

DAIS Concept. "The purpose of the DAIS concept is to re-

duce proliferation and nonstandardization of aircraft avionics,

and permit the Air Force to assume initiative in the specifi-

cation of standard avionic systems and interfaces for future

Air Force system acquisitions. The DAIS concept proposes that

the processing, information transfer, control and display func-

tions be common and service all the previously described func-

tional areas on an integrated basis" (Ref 23:5). This total

svstem concept is to be realized by incorporating into the

DAIS design such features as standardization, modularization,

and redundancy. Table 1 lists the DAIS objectives along with

the corresponding design considerations to meet the objectives.

General Description. A DAIS configuration is composed of

hardware and software building blocks or core elements. The

hardware core elements are the multiplex bus system (Bus Con-

trollers, Remote Terminals, and Data Bus), the processors

(with associated memory), and the controls and displays (pilot

interface). Software core elements are the Operational Flight

Program (OFP) and the Operational Test Program (OTP) (Ref 23:5).

Additional avionics system elements (sensors, weapons, etc.)

are interfaced to the Data Bus via Remote Terminals or, if

they are compatible with the multiplex bus protocol (Ref 31),

connected directly to the Data Bus. Figure 2 is a functional

diagram of a DAIS configuration. The number of processors

and the number and types of avionics controls and displays,

weapons, sensors, and communications would be dependent on the

(type of aircraft and its mission and would be specified by the

- I-

Table I Design Considerations Utilized in

Meeting DAIS Objectives

DAIS Objectives Design Considerations

Reduce Unnecessary Replication (Core Elements)

Development Prolifer- Standardization
ation

Improve Operational Automated Aids

Efficiency and Digital Technology

Availability/ Redundancy Utilization

Maintainability On-board Test

Improve Flexibility Functional Modularity

to Changes System Modularity

Maintain Basic Proven Technology

Avionics Performance

(Ref 23:6)

12

C41

00

> E-
1-4

134

-44

0~0

E

CLCO

0 00

p. -4

00c

0. 0 <C"

-- 4

~~13

systems designer.

Architecture. The DAIS is structured as a federated net-

work (each processor only has direct access to its own assoc-

iated memory). A MIL-STD-1553A standardized time division

multiplex data bus provides dual redundant communication paths

between system core elements (and any bus-compatible avionics

elements). The architecture is designed for application to a

broad class of configurations where the number of processors

can be increased or decreased based on mission processing re-

quirements. Figure 3 shows a general DAIS system architecture.

The DAIS processors are general purpose digital mini-

computers specially engineered for airborne use. Operational

features include a vectored interrupt priority system, interval

timers, floating point arithmetic, and 379K operations per

second throughput (based upon a specified benchmark program).

Up to 65K words of memory in 16K word modules is available,

all of which is directly addressable. Input and output

features include discretes, program control, direct memory

access (DMA), and external interrupts (Ref 23:15-18).

Associated with each processor in a DAIS configuration is

a Bus Control Interface Unit (BCIU). A separate port to memory

is provided for the BCIU via a DMA channel. Functionally, the

BCIU is an extension of the processor's I/O capability and

serves as an interface between the processor and the data bus.

Figure 4 illustrates the major components of a BCIU. Timing,

control, instruction decoding, and data transfer routing is

provided by the Bus Control Module (BCM), a 16-bit

14

-. - _

Er-

z

Li p

Ulu

r-44

0 15

a4 pq P2

'44
CU,

w Lz

Ow C

~ '-4 4

p.41

p. 4 4

4)
4-

CC

4.)

0

000

Co on

E-4~

p.4
4

16

microprogrammed controller with a 1024 word by 72 bit control

memory and a 32-word general register set. Each Multiplex

Terminal Unit (MTU) interfaces the BCM to one of the dual re-

dundant data buses, and contains the transmitter and receiver

circuits, as well as the logic, to operate the 1.0 mbs data

bus. The Processor Interface Module (PIM) contains the input/

output interfaces for communications with the associated pro-

cessor. The PIM has programmed input/output (PIO), direct

memory access (DMA), and interrupt capabilities with the pro-

cessor.

A Remote Terminal (RT) provides the interface between the

dual multiplex buses and a subsystem. The RT transfers data

in both directions on the Data Bus based on commands received

from either bus, and provides status replies in response to

commands. The RT partitions messages to the appropriate sub

systems it services and conditions the signals to (from) the

different subsystems from (to) the Data Bus. The major sub-

modules of an RT can be seen in Figure 5. Each MulLiplex

Terminal Unit (MTU), interfaces to one data bus, transmitting

and receiving information between the bus and a Timing and

Control Unit (TCU). The TCU performs all of the timing, con-

trol, buffering, decoding, and checking required to transfer

information between the MTU and the Interface Modules (IM).

Each IM will interface the TCU to a particular subsystem de-

vice (e.g. a raster display, aircraft attitude sensor, com-

munication device). A standard set of IM types is available

for interfacing the various types of signals possible from

17

Cz14

1-44

'--4

HE 4

0

E- J
>4)

- .I-u

E-4 E0
U, - Z

U, U, iIU,18

various subsystems. Any type of IM can fit in any IM slot

in an RT. The number and types of IMs contained in a partic-

ular RT depends on the subsystems serviced by the RT as spec-

ified by the systems designer.

Software. The OFP software package is resident within

the processors and can be broken down int6 two major parts:

the Executive Software and the Applications Software. The

Executive Software serves as the operating system, and is

mission and aircraft invariant. The Applications Software

changes from mission to mission, from aircraft to aircraft,

or as sensors, weapons, and subsystems vary. The OTP contains

software for use on the ground (on board the aircraft) to

isolate avionics systems failures at the Line Replaceable

Unit (LRU) levels. In support of the DAIS objectives, the

mission software is characterized by top down structured

design, modularization, flexibility to modifications, and

portability.

Executive. The Executive Software is further broken down

into two functional parts: the Master Executive and the Local

Executive. The Master Executive is responsible for overall

system control and resides in the processor designated the

Master Processor. The Master Processor is given responsibil-

ity for control and servicing of the Data Bus. The Master

Executive can also reside in a processor designated the

Monitor, which provides a back-up to the Master Executive.

The Local Executive is resident in the Master Processor and

all other processors (termed Remote Processors). The Local

19

VJ

Executive provides real-time services, data input and output,

interrupt handling, and task control to the Applications

Software. Figure 6 shows a functional breakdown of the DAIS

Executive Software. System Initialization and System Control

are lependent on the actual system and operating procedures

used, and on Master recovery, respectively. Figure 7 shows

the physical breakdown of the Executive Software in the proces-

sors.

The Master Executive is table driven and manages the

system configuration by performing, as a minimum, the follow-

ing functions (Ref 23:20-21):

1) Data Bus Control - controls transmission of synchro-
nous and asynchronous messages over the multiplexed
data bus.

2) System Synchronization Control - allocates time
segments (minor cycle and major cycle) for synchro-
nous messages and performs minor cycle synchroniza-
tion by transmitting master function mode commands
to the other processors.

3) System Error Management - monitors and analyzes errors
and failures based upon both bus and terminal devices.
Initiates message retry procedures to recover from
message errors.

4) Configuration Management - detects and isolates per-
manent device failures, maintains system configura-
tion status, reports failure to the application soft-
ware, and initiates backup or recovery operation if
required.

5) Mass Memory Management - provides for retrieving and
storing information from the mass memory on request.

The Local Executive is identical in each processor and is

only responsible for those activities in its own CPU. In mana-

ging all activities within a processor the Local Executive per-

forms, as a minimum, the following functions (Ref 23:20):

20

0) la0
0 >

"40

r-4 14 4 J
2 0 :) -%-

M0 a) W 1 4
4.J Er.-44

M 0 0 04

)0

I .0 I

.41

"'- CO "

4-1I

Q) v4

00

s-i ~ 0
4) p a) 0p

04 C) 0 u p 41

0 0 E 041 0

'-4

0 w-0-0

COi C O -4 -

0-4 0l
U,~~ "AIv0 J~-~J
Cl)~4- 0 -t 0Lu0

r-4 0 r- r- 0:
) 0 -co0 0 0

0 0 >0., J 4
U) P4 - c o 1r.4 ~-1 4)

0 0 "t" () 4- r. r. . >

p co p p u 0 Orl -

0. 0~ -A 4- 4

T Data Bus

Interface Unit Interface Unit

MASTER REMOTE

MASTER EXEC. LOCAL EXEC.

Hardware Hardware
and and

Interrupt Interrupt
Interface Interface

Master Local
Exec. Exec.

Tables Tables

Bus Process
Control Control

*i I
*I I

Applications Applications

Software Software

-Local Loc
Exec. Exec.

Tab.

Process
Control

Fig. 7 Executive Physical Breakdown (Ref 33:7)

22

1) Process Control - provides services for the Applica-
tions Software to activate and deactivate periodic
and non-periodic tasks when appropriate conditions
have been met. The conditions shall be based upon
logical setting (on or off) of real time events.

2) Event Control - provides the mechanism for setting,
resetting, and evaluating real time events which
communicate conditions (on or off) signaled between
tasks whether in the same or different processors.

3) Data Control - guarantees integrity of shared data
and provides mechanism for transmission and recep-
tion of data over the multiplex bus.

4) Processor Initialization - provides initialization
for processor power transient recovery, initial pro-
gram load, and minor cycle synchronization with the
other processors.

Applications Software. The Applications Software can be

broken down into more basic blocks: Compool blocks, Tasks, Com-

subs, and Events (Ref 33:3). Compool blocks contain the global

data and are centrally defined and controlled. Tasks are the

real-time processes within the system. Comsubs are commonly

used subroutines that perform calculations only, have no real-

time control or interaction, and communicate solely through

parameter passage (no access to Compool blocks). Events are

units of binary valued information that enable tasks and the

environment to interact (Ref 33:3).

The DAIS Executive is priority driven. The Task with the

highest priority which is capable of execution obtains the pro-

cessor. A given Task must declare the Tasks to which it refers.

the Events it uses, the Comsubs it uses, and any Compool data

referred to (Ref 33:3).

The Applications Software implements the specific mission

avionics functions (e.g. navigation, weapon control, flight

23

7

plan, etc.). The Applications Software consists of tasks to

control the various mission dependent sensors (e.g. navigation

aids, communications, radar and subsystems (e.g. weapons), and

perform the various mission functions mentioned above. The

Applications software is organized in a heirarchical control

tree structure as seen in Figure 8. All Applications Software

functions are either controllers or calculators. Each calcu-

lator is controlled by a unique controller (with the exception

of common service routines). A module (as represented by a

node in the tree in Figure 8) can only invoke modules in its

own level or itself. However, the events on which activation

of a module is based can be signalled by modules at other

levels (Ref 20:22).

The functional categories of task modules in the Applica-

tions Software are seen in Figure 9 and specified as follows

(Ref 18:10-12):

1) The Master Sequencer - is at the top of the Applica-
tions Software hierarchy and controls the request
processor, configurator, and subsystem status mon-
itor. The Master Sequencer is only required in the
Master and Monitor processors.

2) The Request Processor - responds to pilot's requests
and invokes the appropriate application functions
to generate information for displays or to control
avionic support subsystems.

3) The Configurator -

a) Defines the set of application functions to
be invoked by request from the Request Pro-
cessor or the Subsystem Status Monitor.

b) Enables a new set of available functions upon
significant changes in mission phasing or equip-
ment moding. This set of functions is based
on a global knowledge of overall system status.

24

1
! ,.

N = CONTROLLER

C = CALCULATOR

(Fig. 8 Hierarchical Control Structure (Ref 20:23)

25

00

C-4

CY

cn

z 0~

~Z

CY)

E'-

z E

En 0

'-4 bZ

C-

0 ao

0)

E4

0

00

-P4

26

U, 0

4) The Subsystem Status Monitor - monitors subsystem
failures and communicates the information to the
Configurator.

5) Mission Operations (OPS):

a) Act as a control authority for operations
either when invoked by phase selection by the
pilot or automatically when current phases are
terminated in an emergency or abnormal condi-
tion.

b) Exist, as a minimum, for preflight/inflight
startup, take-off, cruise, weapon delivery,
approach landing, and postflight shutdown
operations.

6) Specialist Functions (SPECS) - provide functions re-
quired by OPS modules or by the pilot (e.g. naviga-
tion, weapon test, etc.).

7) Equipment Handlers (EQUIPs) - exist for each piece
of equipment (e.g. communication, radar, etc.),
translating the data formats as required for each
equipment and managing the control mode of the
equipment.

8) Display Processors (DISPs) - provide data interface
and control functions in order to manage display
presentations, such as messages, symbols, and
graphical displays on the DAIS controls and displays.

9) The Integrated Multifunction Keyboard (IMFK) Handler-
receives and interprets the pilot-selected IMFK keyed
information.

10) The Multifunction Keyboard (MFK) Handler - is similar
to the IMFK Handler and acts as a backup in the event
of a IMFK failure.

Normal Operation. The DAIS is a real-time'system in which

the Applications Software processes are coordinated with the

passage of real-time in the DAIS environment. Timing within

the DAIS is specified in terms of minor cycles and major frames.

A minor cycle is the time required to execute the shortest syn-

chronous action and a major frame is the longest interval of a

27 I,

synchronous action by the Executive. The number of minor

cycles per major frame is determined by the applications

programmer and is fixed upon system initialization. It is

possible to specify the time of an action within one minor

cycle. I/O interactions, interprocessor interactions, and

task interactions may occur, may be known, and may be con-

trolled within the framework of the minor cycle time

granularity (Ref 25:5-6). Minor cycle synchronization is used

to coordinate the actions of all processors.

The beginning of a minor cycle is signaled by a timer

interrupt (time A interrupt) in the Master Processor. If

the current minor cycle's synchronous bus message list has

been transmitted, then the Master Executive starts the minor

cycle bus message list for the new minor cycle. The minor

cycle bus list is a bus message list of minor cycle interrupts

to each Local Executive (Ref 9:51-53). Upon receipt of the

interrupt, the Local Executive calls the Minor Cycle Setup

Routine which performs several functions: a) schedules Tasks

to be executed during the new minor cycle, b) sets DMA point-

ers to the appropriate message receive and transmit blocks,

and c) in the Master Processor, the Master Executive is

called to start processing the synchronous bus message list

for the new minor cycle (Ref 26:144-156).

Bus Control. Bus control operations form the

heart of the system (Ref 9:40). The Master Processor

and its BCIU control bus protocol and data flow on the bus.

28

1'

An example of synchronous messages is the transfer of inertial

navigation system output data from a Remote Terminal to a navi-

gation applications function in a processor. Synchronous mess-

age operations attend to the predetermined, scheduled flow of

data. A synchronous message is assigned a period and phase;

the period is the number of minor cycles between message trans-

missions, and the phase is the displacement, in minor cycles,

relative to the first minor cycle (Ref 9:51). Asynchronous

message operations manage the data flow which cannot be

scheduled in advance. An example of an asynchronous message

is a request from the pilot, via a Remote Terminal, for a read-

out of the distance to target.

Synchronous bus messages are controlled by a predefined

bus instruction list which is part of the Master Executive's

preloaded tables. Each minor cycle, the particular subset of

synchronous messages to be transmitted during that cycle are

linked to the Master BCIU's list of pending bus messages.

Asynchronous messages, which are also predefined, are sche-

duled by the Master Executive in response to requests from

Remote Terminals and applications tasks within the processors.

In general, asynchronous message operations are given priority

over synchronous operations (Ref 9:42).

All Remote BCIUs (in conjuction with their connected

processors), Remote Terminals, and bus-compatible avionics

subsystems are considered as Remote Devices. Every bus oper-

ation is initiated by the Master BCIU under control of the

(Master Processor. The Master BCIU places a command on the bus

29

--. lp~~~adl ~. ,i I

lines and then monitors the bus for a status response by the

Remote Device. A Remote Device monitors the bus for commauds

directed to it. Upon detecting a command addressed to itself,

the Remote Device responds by performing the operation and

then placing a status word on the bus lines. By setting

selective bits in the status word, the Remote Device can re-

quest services from the Master Processor/BCIU or inform the

Master Executive of a detected failure.

Some bus operations, such as transmission and reception

of synchronous messages, require no intervention by the proces-

sor. The BCIU uses DMA to transfer the data to (from) the

processor from (to) the bus. Asnychronous bus operations are

among those bus operations which require the BCIU to interrupt

its processor in order that the Local Executive can process

the interrupt and take appropriate action.

Task Control. Tasks and Comsubs are the processing

modules of the Applications Software. Real-Time Statements

and Real-Time Built-In Functions are used by Tasks to invoke

Local Executive services to control and reference the state of

other Tasks and the values of Events and Compool Block data

(Ref 25:9). To understand how Tasks interact, it is necessary

to understand the possible states a Task may be in. Each

Applications Software Task is in one of the states shown in

Figure 10 at any given instant in real time. Not all states

are mutually exclusive. A SUSPENDED task is also INVOKED,

ACTIVE, and DISPATCHABLE. The Real-Time Statements SCHEDULE,

(WAIT, CANCEL, and TERMINATE are used by Tasks to change the

30

1*!

zz

C-C-4

z

DISPATCHABLE:

HED H

z

HP

Fi. 0TakStteTaniio iara Re 5:0

z3

states of other Tasks (or themselves in some cases).

Associated with each Task is an Event Condition Set.

The Event Condition Set is a set of Conditions, each of which

is associated with one or more Events. Dependent on the

occurrence of these Events, each Condition has a value of ON

or OFF. The "desired value" of the Condition may be either ON

or OFF, and when all the Conditions in an Event Condition Set

have their respective "desired values", the associated Task is

ACTIVATED by the Executive (Ref 25:11-18).

A Task returns from the ACTIVE state to the INACTIVE

state for one of two reasons: a) it completes execution or

b) another task forcibly TERMINATES it. In either case,

immediately after being placed in the INVOKED/INACTIVE state,

the Task's Event Condition Set is evaluated, and if all Con-

ditions have their desired values, the Task is immediately

ACTIVATED (Ref 25:11).

A Task that is ACTIVATED is immediately put to the DIS-

PATCHABLE state. All DISPATCHABLE Tasks are capable of being

executed. Whenever the Executive passes control to the Appli-

cations Software, the DISPATCHABLE Task with the highest

priority is selected and executed. Once a Task is in the

ACTIVE/DISPATCHABLE/EXECUTING state, one of three things can

happen to it: a) it completes execution and goes to the

INACTIVE state (see above), b) a higher priority Task becomes

DISPATCHABLE, and the currently executing Task is SUSPENDED,

or c) the Task executes a WAIT statement (which specifies a

desired value for an Event or a future time), which causes

32

the Executive to place the Task in the WAITING state. When

the waited-for condition is satisfied, a WAITING Task is

again made DISPATCHABLE. A WAITING or SUSPENDED Task may be

CANCELED or TERMINATED by another Task.

At any time, there may be many processes potentially

executable within a processor (Ref 25:12). These processes

include Tasks, and Executive actions invoked by Tasks in other

processors or in response to an RT-generated request. A system

of priorities exists to resolve these conflicting demands for

the processor. There are two classes of Tasks: Normal Mode

Tasks and Privileged Mode Tasks. As a group, Privileged

Mode Tasks and Executive actions have higher priority than

Normal Mode Tasks (Ref 25:12).

Once a Privileged Mode Task or an Executive process

starts executing, it runs to completion. If an Executive

action is invoked by an executing Privileged Mode Task or

Executive Process, the invoked process is executed as if it

were an inline block of code. A Privileged Mode Task or an

Executive process cannot be interrupted by a Task or Executive

action requested or invoked outside of itself (Ref 25:12).

When no Privileged Mode Task is ACTIVE and no Executive action

is pending, the highest priority DISPATCHABLE Normal Mode

Task is executed.

Theoretically, Normal Mode Tasks are linearly ordered by

priority while Privileged Mode Tasks are executed on a First-

come-first-serve basis. In actuality, there exists within

each processor a table of entries, one for each Task, for all

33

of the Applications Tasks (Normal and Privileged Modes) re-

siding within the processor. This table, named Task Table B,

is ordered by priority, with Privileged Mode Tasks first, and

the lowest priority Normal Mode Task last (Ref 26:21). The

relative order of the Privileged Mode Tasks is arbitrary, but

fixed at compilation time.

Immediately following system initialization, one Task, the

Master Sequencer, is INVOKED by the Executive, while all other

Tasks remain in the UNINVOKED state (Ref 25:11). Thereafter,

any Task may be INVOKED by a schedule statement or UNINVOKED

by a CANCEL statement executed by another TASK.

Summary. The Digital Avionics Information System (DAIS)

is a distributed processor avionics computer system. The

major hardware elements are the multiplex bus system (Bus Con-

trollers, Remote Terminals, and Data Bus), the processors (with

associated memory), and the controls and displays (pilot inter-

face). Additional avionics system elements (sensors, weapons,

etc.) are interfaced to the DAIS system through Remote Terminals

attached to the Data Bus or through direct attachment to the

bus. The major software elements of the DAIS are the Opera-

tional Flight Program (OFP) and the Operational Test Program

(OTP). The OFP has two major parts, the Executive and Appli-

cations Software. The Executive serves as the operating sy-

stem, providing overall system control, bus control, and real-

time services to the Applications Software. The Applications

Software implements the avionics functions (e.g. navigation,

weapon control, flight plan, etc.), and can be thought of as

34

the user tasks serviced by the Executive. The Applications

Software is structured as a hierarchical control tree with

tasks at the nodes. The topmost task in the hierarchy, the

Master Sequencer, is scheduled immediately following system

initialization. Thereafter, tasks are executed after they are

scheduled by the task immediately above them (and, of course,

in line) in the control tree structure (see Figure 8). The

OPT is composed of software used on the ground to isolate

avionics system failures.

35

Evaluation Nets

The remainder of this chapter is devoted to the defini-

tion of Evaluation nets (E-nets). The axioms and definitions

presented are from the formal definition of E-nets in

Reference 15. Several axioms and definitions are presented

which lead to the formal E-net definition presented near the

end of this section. An example of the use of E-nets to model

a simple computer system is provided and will be referred to

repeatedly. First, a basic definition of E-nets is developed.

Next, the concept of "net flow" is discussed and defined.

Then, the formal E-net definition is developed and presented.

Lastly, the concept of "macro structures" is introduced and

an example of a macro structure is presented.

Basic Definition: E-nets are characterized as marked

interpreted directed graphs (Ref 15:Ib). An E-net is composed

of two sets of nodes, transitions and locations, interconnec-

ted by "directed" arcs. Transitions are only connected to

locations and locations are only connected to transitions via

arcs directed into or out of the nodes. In Figure 11, loca-

tion bI is an input location to transition a1 and location b2

is an output location of a1 , as evidenced by the directed arcs

connecting these nodes.

36

- ! - I

al

Fig. 11 Simple E-Net

The structure of a parallel system can be pictorally re-

presented by an E-net graph. The transitions represent events

or actions in the system and the locations represent conditions

which exist in the system. A transition action causes the

status of the locations (and, thus, the conditions they repre-
4, sent) attached to the transition to be altered according to

the particular transition definition (Ref 15:30). A token is

a marker which may reside on a location and indicated the

status of the location (Ref 15:30). The placement of a token

on a location represents a corresponding condition which is

satisfied. An E-net with tokens is a "marked", directed

graph.

Bv assigning a set of tokens to a subset of the locations

in an E-net graph, and then executing the transition actions

as the transitions are enabled (in accordance with the rules

and definitions which follow), the token flow through the

E-net can represent the dynamic activity of the modeled system.

When an enabled transition fires, it removes tokens from a sub-

(set of its input locations and places tokens on a subset of

37

. = . ,.. ..

its output locations (Ref 15:Ib). The transition firing time

specification and the modification of the status of the attach-

ed locations provide an interpretation of the transition

function (Ref 15:74), completing the characterization of

E-nets as marked, "interpreted", directed graphs.

Basic Definition. This section presents the axioms and

definitions that underlie the basic definition of an E-net.

For a thorough discussion of the theory and development of

E-nets, the reader is referred to chapter 2 of Reference 15.

Axiom 1 (Ref 15:30): The maximum number of locations

connected to a transition is four. The limitation facilitates

precise definition of the concept of transition action

(Ref 15:30): the number four is linked to the number of primi-

tive transition types (5) provided in E-nets. A location may

be an output location for, at most, one transition and/or an

input location for, at most, one transition. A direct result

of this restriction is that two or more transitions will not

compete for a token on a common input location (race condition).

Definition 1 (Ref 15:30): "A location is empty if it

does not contain a token and full if it contains a token. If

it is not known whether the location is empty or full, the

status of the location is undefined."

Axiom 2 (Ref 15:30): "A location may change from empty

to full or full to empty only by the action of one of the

transitions to which it is connected.."

AXiom 3 (Ref 15:31): "The action of a transition is

4defined by the mapping whose domain and range are the status

38 a.
I'.,

of locations connected to the transition." For representa-

tion purposes, the status of locations attached to a transi-

tion are represented by an n-tuple, where n is the number of

locations attached to the transition. The values that a coor-

dinate in the n-tuple may take are: a) 1 if the status is

full, b) 0 if the status is empty, and c) tif the status

is undefined.

Definition 2 (Ref 15:32): "A peripheral location is a

location having exactly one connection to one transition.

Locations oriented into (out of) a transition are input

(output) locations of the transition. All locations that are

not peripheral locations are inner locations."

Definition 3 (Ref 15:32): A resolution location

(r-location) is a location that is directed into an X or Y

transition (see Definition 4). Based on the r-location status

of 0 or 1, an alternate output location of an X transition or

an alternate input location of a Y transition is selected for

the action of the transition. A peripheral r-location may

take on the values 0,1, or 0. An inner r-location may only

take on the values 0 or 1 (Ref 15:32).

Axiom 4 (Ref 15:33): "Only resolution locations may

have an undefined status."

Definition 4 (Ref 15:35): The following five basic

transition types are provided in E-nets. Letting bi and b2

represent input locations, b3 and b4 represent output loca-

tions, and r represent a resolution location, the basic tran-

sition types with their corresponding mappings are:

39

pt

-- _ I II I -

T(bl,b 3): (1,0) - (0,1)

J(bl,b2,b3): (1,1,0) - (0,0,1)

F(bl,b2,b3): (1,0,0) (0,1,1)

X(r,bl,b3,b4): (0,1,0,0) (e,0,1,0)

(0,1,0,1) (e,0,1,1)

(1,1,0,0) (e,0,0,1)

(1,1,1,0) . (e,0,1,1)

Y(r,bl,b2,b3) (0,1,0,0) (e,0,1,1)
(ol,o,o) (e,0,0,1)

(0,0,1,0) + (e,0,0,1)

(1,1,1,0) (e,1,0,1)

(1,1,0,0) + (e,0,0,i)

(1,0,1,0) (e,0,0,1)

"If r is a peripheral location, replace the character, e,

by o: otherwise replace e by 0" (Ref 15:35). An X or Y

transition action leaves the status of peripheral r-locations

undefined (how their status becomes redefined is discussed

later). Figure 12 illustrates the graph representations of

the corresponding above transition types. The vertical bars

in the graphs represent the transitions, the hexagons repre-

sent resolution locations, and the circles represent standard

locations. The mappings of the left-hand tuples into the

right-hand tuples in Definition 4 correspond to the "firings"

of the given transitions. A more formal definition of a tran-

sition firing is available.

40

- C -

T - transition J - transition

F - transition X - transition

Y - transition

(Fig. 12 Basic Transition Types (Ref 15:35)

41

Definition 5 (Ref 15:36): "A transition firing is a

three phase operation consisting of the following phases:

1) Enable phase - at the instant the status of the loca-
tions connected to the transition satisfy the left-
hand side of the transition's definition, the tran-
sition is enabled and begins operation.

2) Active phase - The transition action is in progress,
but the status of all locations attached to it remain
unchanged.

3) Terminate phase - The transition action is completed,
instantaneously changing the status of all associated
locations to agree with the right-hand side of .the
transition schema."

Definition 6 (Ref 15:37): A transition with a peripher-

al resolution location is pseudo enabled whenever the status

of the associated locations agrees with the left-hand side of

the transition schema except for the resolution location whose

status is undefined (o). A pseudo enabled transition can only

become enabled when the net environment causes the status of

the resolution location to become full or empty.

Definition 7 (Ref 15:38): The transition time (firing

time or processing time) of a transition, a, is denoted t(a),

and is the time required for the active phase of a firing of

transition a. T(a) may be a constant value for all tokens

that enable a. For an X or Y transition, t(a) may depend on

which alternate path is taken (denoted t0 (a) if the "0" path

is taken and t1 (a) if the "I" path is taken) (Ref 15:39).

The enabled and termination phases of a transition firing re-

quire zero time. These two phases merely represent the instan-

taneous setting of values in the domain and range of a transi-

tion mapping, respectively.

42

-? -- -

Definition 8 (Ref 15:40): An Evaluation net structure,

E, is denoted by

E = (L,P,R,A) where

L = a finite, non-empty set of locations,

P = a set of peripheral locations, P S L,

R = a set of resolution locations, R SL , and

A = a finite, non-empty set of transitions, la i}, where

ai (s ,t(ai)); s S and t(ai) c T:

S =a finite, non-empty set of transition types
satisfying Definition 4,

T ={t(ai) I * (ai) is a transition time for ailI

Figure 13 shows an E-net structure whose formal descrip-

tion is as follows (Ref 15:40-41):

E = (L,P,R,A)

R = frl ,r 2 ,r 3 ,r 4)

P = {b1,b 131) UR

L = {b2,b3,b4 ,b 5,b6 b 7 b8,bq,bjO,bjjb 12) Ui P

A = {al,a 2,a3 ,a4,a5,a6 ,a7 a8)

a. = (x (rl,bl,b 4 b3),(tO(a1),t1 (a1)))

a2 = (J(b 2 -1b 3,b5),t(a 2))

a3 = Yr2b b5b6,ta3tla3)

a4 = (Jb 6 1b 7 b8),t(a 4))

(a 5 = MFb 8 bqb 7),t(a 5))

43

PWV

'-44

T-4 >1
441- 4

co 0 r-

0) CSp

-40 u0 r..

>10 1 0

00a

-0 0 1 p c 0 p
W4. 0 0 44 " 4

w 0 0 m 0.0
0'O 04C)0 Q

0 0 U) 0.0

0 CL 0 1 w U

.0 to .. (() n0)

0 0 *4J 0 4J 0

E 0 Z - 0 04- 0

> 1

1-4 P-4'~

7 Z2)c
0. 0 0- -

0 00 -0 rOW -
40>0J 0 -,4 0

0 0 V'r4 -, r-4

*4 * 4 r-4 "4. 2(
$4.- V Q.-v 41 ~ U

w..- ca 0 40 -4t

C14 4 > M C'..4 0 0 0 3 0

0 - CA4-J 0 W- U) U)
U) w 0 0 0 0C0.

.0 0z cr w o
w 0.. to.

0 4 p 0 -A 44

.0 0..0 .0 0. o w 0o

44

a6 = Xr3'bg'b11,b1o)'(to(a6),tl(a6)

a7 = (F(blo,b2 ,b1 2),t(a 7))

a8 = (Y(r4 ,bll,b 1 2 ,b1 3),(to(a8),t1 (a8)))

where the t(a.) are arbitrary transition time expressions.

Figure 13 is a simple E-net model of a computer system

executive where a job which enters the mix may need a tape

drive. A job that needs a tape drive must be allocated one

(transition a2 fires) before it can proceed to request the cen-

tral processor (location b6). If the processor is idle (b7

contains a token) and a job requests it (b6 contains a token)

then the processor is allocated (transition a4 fires). After

a job has finished with the processor, the processor is deall-

ocated and, if applicable, then the tape drives are released.

It should be noted that the resolution locations, rl,r 2 ,r3,

and r4 , serve to avoid possible conflicts in the net.

r-locations rI and r3 determine which output location will

receive a token when their respective transitions fire.

r-locations r2 and r4 determine which input location is to be

considered the enabling location (and will lose a token) when

the respective transitions fire. Since there are no inputs to

rl,r2,r3, and r4 from the net, it is assumed that the environ-

ment of the net will set the values of the r-locations

((Ref 15:42). It should also-be noted that if the transition

45

AW

times, t(a), were given, it would be possible to determine

"a time for tokens to traverse the net, yielding the notin

of turnaround time," (Ref 15:29).

Net Flow. " The status of an Evaluation net is given by

providing the status of each location associated with the net,

where each location is empty, full, or undefined" (Ref 15:49).

The initial marking of a net necessarily precedes the begin-

ning of operation of the net. Then, either a transition must

fire or a peripheral location must become empty or full to

change the net marking (Ref 15:50). Additional definitions

are provided in the following paragraphs on which the discus-

sion of net flow is formally based.

Definition 9 (Ref 15:50): "Given an evaluation net

structure, E = (L,P,R,A) , a marking of E is a function, M,

taking L into the set {O,i, 1." A marking of a net, E is

denoted by

M(b.) = j , j f{,1,C}

for all bi c L. M(bi) = 1 implies that location bi is full,

M(bi) = b implies that bi is empty, and M(bi) implies

that the status of bi is undefined. The initial status of L

is defined by the initial marking of E , denoted Mo .

An evaluation net can now be defined by the ordered pair

(E,MO) (Ref 15:50). Given a net defined by (E,Mo), let a re-

sulting sequence of transition terminations be ail, a2
11 2

Denoting the status of L (the set of net locations) after

46

-- ' '- -,[,,,. it _ i I _ l_

transition ai. has fired by M. , the sequence M0 ,MI,..., M is
jJ

the state sequence of the net, E, after j transitions have

terminated (Ref 15:50). Referring to Figure 13, let

M0 (b) M0 (b7) = 1

Mo(bi) = , i = 2,...,6,8,...,13 and

M0 (r) = 0 , j = 1,2,3,4

Then, the state sequence

MO,M1 ,M3,M4 ,M5 ,M6,M 8

is the state sequence for the net of Figure 13 corresponding

to the transition termination sequence

al,a 3 ,a4 ,a5 ,a6 ,a8

and with initial marking M0

Definition 10 (Ref 15:51): Given the net E = (L,P,R,A)

with al,a 2 ,...,an c A and bl,b 2 ,...,bn c L where bi is

directed into ai and bi+i is directed out of ai, a "path in E of

a token K is a sequence of locations that K resides on for or-

dered firings of al,a 2 ,...,an and is denoted by

= bi~b2 l o~b n ," (Ref 15:51).

Definition 11 (Ref 15:51): Given (E,M0), the dwell time

of bi c L, denoted d(bi), is the total amount of time that the
(

47

status of b. has been full since the net was initialized with

MO . The dwell time of token K on bi, denoted dK(bi), is the

total amount of time K resided on location bi.

It is intuitively obvious that the path of a token in a

net may indicate the utilization of facilities represented by

the locations. Referring again to Figure 13, locations bI and

b1 3 represent the input and output control points, respective-

ly, of a computer system executive. The time it takes a token

to traverse the path bl,...,b 1 3 in Figure 13 corresponds to

the "turnaround time" of the system for a given "task". Like-

wise, the ratio of the dwell time d(b8) to the total net oper-

ation time corresponds to "central processor utilization". To

compute the dwell time of a particular token K on b8 , we use

the formula

dK(b8) = t - i

The value ti is the system clock time at which the termination

phase of a firing of a4 placed token K on location b8 . Time

t. is the value of the system clock when the termination phase

of a subsequent firing of a5 moves token K from b8 to b9 . The

token placed on location b7 when transition a5 fires denotes

that the processor is idle. To compute d(b8), we use the formula

d(b8) = dK(b8) + dK2(b) + " + dKn (b)

48

where the n tokens KIK 2 ,...,Kn reside on location b8 during

the net operation (i.e. n "jobs" are processed by the system).

Definition 12 (Ref 15:56): "Given (E,MO) and a path,

K = blb 2 ""..bn . The traverse time of a token K through

path Y, denoted D(YK), is the time that K leaves location bn

minus the time K entered location b."

The traverse time of a job that does not require a tape,

in Figure 13, is the time a job (token) leaves b1l minus the

time it entered b1 . Still referring to Figure 13, it is noted

that the minimum traverse time for the net (the time for a

token to reach b1 3 after it has been placed on b1) is the sum

of the transition times t(a1),t(a 3),t(a 4),t(a 5),t(a 6), and

t(a8) for a job which does not request a tape drive. The act-

ual traverse time for a token, K, representing a "non-tape"

job is the sum of the dwell times dK(b1) + dK(b4) + dK(b6)

+ dK(b8) + dK(bg) + dK(bll) . For any token, K, represent-

ing a non-tape job in Figure 12, the following relationship is

always true (Ref 15:56):

Z t(ai) . E dK(bj) where i = 1,3,4,5,6,8

and j = 1,4,6,8,9,11

Formal Evaluation Net Definition. In the preceding sec-

tions, the basic structure of an E-net has been introduced and

the concept of net operation has been discussed. In this

49

------- -N W --- - -- -_ __ _ _ _

section, the token structure w'71 be further defined, which

leads to a more complete descrip~ion of locations. Two mech-

anisms, transition procedures and resolution procedures, are

introduced, which refine the concept of net operation. Also,

a special token called an environment variable is introduced

which is used to represent a portion of the environment. At-

tribute tokens, transition procedures, resolution procedures,

and environment variables complete the formulation of E-nets.

A formal E-net definition is presented, with an example, at the

end of this section.

Definition 13 (Ref 15:61): "A simple token is a primi-

tive marker which indicates that a location is full whenever

it resides on that location. An attribute token is a unique

simple token that has a finite, non-zero number of attributes

associated with it."

Attribute tokens require a different notation than simple

tokens to indicate a net marking. For simple tokens on a lo-

cation, b, the marking of b is denoted M(b) = 1 or M(b) = 0

for b full or empty, respectively (see Definition 9). If the

token, K, on b is an attribute token, then additional notation

is required to indicate the marking of b. If K has n attri-

butes, then the token is denoted Ktn] (Ref 15:61). "The ith

attribute of K[n] is denoted by K(i), for I < i < n

(Ref 15:62). (Note that K[n] refers to a token name and K(n)

refers to a token attribute value.) Now the marking of loca-

tion b with token K[n] residing on it is denoted by

M(b) = Kin] , and M(b) = 0 if b is empty.

50

• ___ -

"Attribute tokens impose a data structure on the loca-

tions of an evaluation net" (Ref 15:62). A particular loca-

tion will always receive (provide) a token with a fixed num-

ber of attributes. It is not required, however, that all of

the locations attached to a particular transition have the

same number of attributes. The location specifications in a

net description must be redefined to incorporate the concept

of location data structure.

Definition 14 (Ref 15:63): Given E = (L,P,R,A) , and

bI c L, then if b1 may contain only simple tokens, b1 is de-

clared as "b1 ". Otherwise, if b1 may contain attribute tokens

with fixed n attributes, bI is declared as "bln]

The ith attribute of a token K[n] residing on b[n] is re-
4

ferred to as M(b(i)). Suppose that a transition, ai, places

token Kin] on location b[ml and n m . If g is the smaller

of m and n, then the marking of b[m] after ai fires is

(Ref 15:63):
M(b(1)) := K(1)

M(b(2)) := K(2)

M(b(g)) K(g)

If n > m, then the attributes m + 1,..., n of K[n] are lost.

If n < m, then the values M(b(n + 1)),..., M(b(m)) are unde-

fined (Ref 15:64).

Ci

51

MW

Suppose now that transition ai is a J-type transition

(refer to Definition 4) with input locations b1in] and b2[n]

and output location b3 [In]. Suppose also that b1 [n] and b2In]

contain two distinct tokens Ki[n] and K2 [n]. After the tran-

sition fires, locations bi[n] and b2 [n] become empty and a

token is placed on location b3 [n]. What is the identity of

the token on b3 In]? This is one example (Ref 15:64) of why

the introduction of attribute tokens and the imposition of

data structure on locations requires an expanded definition of

a transition declaration in order that the function of a tran-

sition may be fully interpreted. A procedure is added to the

transition declaration to interpret the action of the transi-

tion with respect to the attribute tokens place on the tran-

sition output location(s).

Definition 15 (Ref 15:65): "A transition procedure

describes the action of the environment and the associated

locations of the transition on the token. The form will be

given in BNF" (Ref 15:65-66) (See Appendix A for an

explanation of the BNF form used here):

<transition procedure> ::= [<conditional list>]

<conditional list> ::= <predicate> . (<expression list>:

<conditional list> I

<predicate> + (<expression list>

<Predicate> ::= <Boolean factor>

<predicate> <Boolean factor>

52

t ,

<Boolean factor> ::= <Boolean secondary> I
<Boolean factor> <Boolean secondary>

<Boolean secondary> ::= <Boolean primary>

- <Boolean primary>

<Boolean primary> ::= T I F <relation>

<relation> ::= <right part><relational operator>

<right part>

<relational operator> ::> I = I < I <

<expression list> ::= <expression>;<expression list>

<expression>)

<expression> <left part><right part>

<right part> <term> I <add op><term>

<right part><add op><right part>

<term> ::= <factor> I <term><mult op><factor>

<factor> <primary> I <factor> + <primary>

<primary> := <unsigned number> I

<variable>(<right part>) I

<variable>

<mult op> :: * I /

<add op>::= + I -

<left part> <simple variable>

<variable> <simple variable> I <number>

<simple variable> ::= M(<location name>(<attribute #>))

<environment variable>

<location name> ::= b c {b I b[n] c L or b c L,

b <identifier>)

53
______,

<attribute #> i c {i j i is an integer, 1 < i < n)

<environment variable> ::= <identifier>(<attribute #>)

<number> ::= <unsigned number> I + <unsigned number>

- <unsigned number>

<unsigned number> <decimal number> I

<exponent part>

<decimal number><exponent part>

<decimal number> ::= <unsigned integer> i

<decimal fraction> I

<unsigned integer><decimal fraction>

<exponent part> ::= 10 <integer>

<decimal fraction> ::= . <unsigned integer>

<integer> ::= <unsigned integer> I + <unsigned integer>

- <unsigned integer>

<unsigned integer> ::= <digit> I <unsigned integer><digit>

<identifier> ::= <letter> I <identifier><letter> I

<identifier><digit>

<letter> ::= A B C I z.. z

<digit> 0 I 1 I 2 j ... j 9

A transition procedure has the form

[P I , (e ,,;''';e In):''':PK ' (e K I;''.;eK .)]

where the pi, (I < i < K) , are <predicate>'s and the eij

are <expression>'s (Ref 15:66). The pi are evaluated in

(numerical order starting with pl. When the first pi is

54

evaluated to true (T), its corresponding expression list,

e,,...,ein' is executed and then transition procedure eval-

uation is terminated. If none of the pi are true, then none

of the expression lists are executed. The previous notation

describing an E-net structure, Definition 8, must be amended

to incorporate the following definition of the entry A in the

tuple (L,P,R,A).

Definition 16 (Ref 15:67): The set of transitions, A,

is denoted by:

A = {(s,t(a),q) I s E S,t(a) c T,q c Q1

S = A finite, non-empty set of transition

schema satisfying Definition 4.

T = {t(a) I t(a) is a transition time for

transition a (as specified in Definition 7)).

Q = A finite, non-empty set of transition

procedures satisfying Definition 15.

The addition of transition procedures requires that

part 3) of Definition 5 must now be replaced by the following:

3) "Termination Phase: The transition completes pro-
cessing, changing the status of the associated lo-
cations to agree with the right-hand side of the
transition by executing the given transition pro-
cedure " (Ref 15:67)

(

55

A portion of the environment of a net may be represented

by a specialized attribute token known as an environment vari-

able. More precisely, environment variables form part of the

interface between a net and its environment.

Definition 17 (Ref 15:68): "An environment variable is

an attribute token, K[n], where n > 0 , that represents the

status of a portion of the environment." The set of net envi-

ronment variables is denoted by:

= Ki[ni],K 2 [n2],...,Km[nm•

There are two ways to reference an environment variable.

(Refer to Definition 15) An environment variable may appear

as a <left part> of a transition procedure <expression>. The

result of this type of reference is the alteration of some

attribute of the environment variable (Ref 15:68). An environ-

ment variable may appear in a <predicate> or <right part> of

an <expression>. The result of this type of reference uses

the value(s) of the environment variable's attribute(s), but

does not alter them (Ref 15:68).

A restriction on net interpretation must be introduced to

prevent race conditions with repect to environment variables.

No two transitions may terminate simultaneously or change from

pseudo enabled to enabled simultaneously if a common environ-

ment variable is involved. A transition may not change from

pseudo enabled to enabled at the same instant that another

transition terminates if a common environment variable is in-

volved (Ref 15:96).

5

' 56

________4

1'i

Another portion of the net-environment interface has al-

ready been introduced: peripheral resolution locations

(Definition 3). Referring to Definition 4, when an X or Y

transition fires and the transition's input r-location is also

a peripheral location, the firing of the transition leaves the

status of the resolution location undefined. Before the tran-

sition can become enabled again the environment has to define

the resolution location's status (Definition 6). The mechan-

ism for defining the status of peripheral resolution locations

is the resolution procedure.

Definition 18 (Ref 15:69): "A resolution procedure is

an expression

Y(r) = r :[<predicate> M(r) := s

<predicate> M~r) := 1 - s]

where s c {0,11 and r is the label of the peripheral

resolution location. Denote the set of resolution procedures as

I = {Y(r) I v(r) is a resolution procedure and r c P R)

If the first <predicate> is true, then M(r) is set to s. Else,

if the second <predicate> is true, then M(r) is set to 1 - s.

Otherwise, the setting of r remains undefined" (Ref 15:69).

A resolution procedure is only evaluated when the transi-

tion is pseudo enabled (see Definition 6). If the resolution

location status is still undefined after the resolution proce-

dure is evaluated, then the value of at least one argument of

one of the <predicate>'s must change before the resolution

(procedure is evaluated again (Ref 15:69).

57

All of the E-net constructs and mechanisms have been intro-

duced, and it is now possible to formulate a final net defin-

ition which provides the E-net structure, the initial marking,

and the environment interface. Following the general defini-

tion, the formal net description of the net in Figure 13 will

be presented.

Definition 19 (Ref 15:70): "An evaluation net is a

tuple,

(E,M o(ET)) such that

E = (L,P,R,A) is an evaluation net structure

satisfying Definition 8.

M is an initial marking (Definition 9).

E is a set of environment variables (Definition 17).

T is a set of resolution procedures (Definition 18).

Before presenting a formal net description of the net in

Figure i, it is desireable to refine the net itself by incor-

porating attribute tokens in the net model to represent the

"Jobs" in the "system". A job token will have three attributes:

1) K(1) : Central processor utilization time.

2) K(2) : Tape I/O time.

3) K(3) : 1 if the tape drive is required, 0 otherwise.

Assuming that processor utilization and tape I/0 are fully over-

lapped, the processor is allocated to a job for max (K(1), K(2))

(time units. Other assumptions, related to tape drive allocation,

58

7-

are that it takes 45 seconds to fetch a tape as represented by

tl(a 1) and it takes 15 seconds to mount or dismount a tape as

represented by t(a2) and t(a7), respectively. The formal net

definition of the refined model of Figure 13 is as follows

(Ref 15:71-73):

E = (L,P,R,A),

R = {r,r 2 ,r3 ,r4

P = {b1[3],b 13 [3]}UR

L = {b2 ,b3 [3],b 4 [3],b 5 [3],b 6 [3],b 7 ,b8 [3].

b9 [3],blo[3],bjj[31,b1 2 [311U P

A = {a,a 2 ,a3 ,a4 ,a5 ,a6 ,a7,a8)

a1 = (X(r1 ,bl[3],b4 [3],b31)3], (0,45 seconds),

[(M(r1) = 1) - (M(b3 13]):= M(b1 [3])):

T - (M(b4 [31):= M(b1 [3]))])

a2 = (J(b2 ,b3 13],b 5[31),15 seconds,

[T - (M(b 5 131):= M(b 3 (31))])

a3 = (Y(r2 ,b4[3],b 5[3],b 6 1[3]), (0,0),

[(M(b4 [3]) OA M(b5[3]) =)

(M(b6 [3]):= M(b4 [3])):

(M(b4 13]) = 0 A M(b5 13DA 0)+

(M(b6 13]):= M(b5 [3])):

(M(r2)= 0 - (M(b6 3]):= M(b4 [3])):

T * (M(b6[3]:= M(b5[3]))])

59

H"W-~~~~~ .q JfSP-4N mm

a4 =(J(b 6 [31,b 7 ,b 8 [31),o,

[T -(M(b 8[3):,. M(b 6 [3]))])

a5 =(F(b 8 [1,b 9 t31,b7), max(MNb(1), M(b 8 (2))),

[T -~ (CPU(1):= CPU(l) + M(b 8 (1));

TI0(1):= TIQ(1) + Mb82)

M(b 7) : =1X)

a6 MXr 3,1bq[33,bjjt3Ibj0t3j), (0,0),

fM(r3) = 0 - (M(b11f13]):= M(bgt31)):

T - (M(b 10 [3]):= M(b9Ii3D)])

87 =(F(b 10 [31,b 2 1b1 2 [31!), 15 seconds,

[T - (M(b 2):=1;

M(b 1 2 [3j)-.= M(b 10 [1))1)

a8 (Y(r4 ,bjf3j,b 12 [3],b 13 [3]), (0,0),

r(M(bll[f3D A o A M(b 12[3]) = 0)

(MO,11f 3]) 0 oA M(b 1 2 [3]) 4 0)

(M(b 13(31):= M(b 12[31)):

M(r4) = 0 *(M(b 13 [3):= M(b 11 [3])):

T *(M(b 13[3]):= M(b 12 [3]))])

M0 (b 2) =M 0(b7) =1; M0(bi[3]) = 0,

(for all 1 < i < 13,
1 2, 1 7).

60

m Pon,
7w.

= {cPu[1], TIO[1]

V = {T(ri), 1 (r2), '(r 3), '(r4)}

T(r 1) = r1 :[M(b1 (3)) = 0 * M(r1):= 0:

T - M(r 1):= 1]

'(r 2) = r2 :[T - M(r 2):=1]

(r 3) = r3 :[M(b9 (3)) = 0 * M(r 3);= 0:

T * M(r 3):=]

(r 4) = r4 :[T - M(r 4): 1]

This new definition of the net in Figure 13 provides a

full interpretation of the graph. When a token is placed on

location bl, transition a, is pseudo enabled. Resolution pro-

cedure V(rI) is then evaluated. Based on the value of attri-

bute three of the token, M(r I) will be set to 0 or 1. Assign-

ing the value 0 or 1 to r1 enables transition a1 . Transition

a1 fires, with firing time equal to 45 or 0 seconds, moving

the token on b1 to b4 or b 3 , respectively. The environment

variables, CPU[i] and TIO[I], are updated each time transition

a5 fires, providing the system performance measures of total

CPU and tape drive usage. Attribute tokens, transition pro-

cedures, and resolution procedures greatly enhance the per-

formance measurement capabilities of E-nets while providing

a clear and definitive method of executing the net.

4 Macro Structures. It is sometimes desireable to be able

61

t!

_________________.............._____

to "compress" a redundant sequence of transitions and locations

or to replace a cluster of nodes with a simple structure which

is a clear and more concise representation. Macro E-nets are

structures which provide just such a capability (Ref 16,17).

Macro structures can be derived to meet the needs of the net

under consideration. However a "standard" macro structure, a

priority-in queue, will be presented since they appear in some

of the nets in Chapter III. Formal derivations of several

types of macro structures can be found in Reference 15 (113-126)

and 17.

Figure 14 is a priority-in queue of length four composed

of evaluation net primitives. Each non-resolution location

may accept an attribute token Ki[1] with one attribute , which

represents the token's priority. Location q4 is the tail of

the queue and q1 is the head of the queue. Assume the follow-

ing net marking:

M(ql) = K1 [1] , K1 (1) = 3

M(q2) = K2 [1] , K2 (1) = 1

M(q3) = M(q4) = M(bI) = M(b2) = M(u1)

= M(d1) = M(d2) = M(d3) = 0

M(ri) = M(si) = * , for i = 1,2,3

Now place K3 [] on bl, with K3 (1) = 2 . It is required to

place K3 [11 on q2 and move K2 [1] back to q3. The following

(markings and transition firings will perform the needed actions

(Ref 15:115-116):

62

t,
___!__oI,

v~4

r-4

44

0)

e~.a

100

0480

cnJ 0

0

41i

C14-

0

'4

0
"4

63

I N _ _ _ _ _ _ _ _ _I

Set M(s3) = 0 ; Fire Y3, (move K3 [] forward).

Set M(s 2) = 0 ; Fire Y2 1 (move K3 [1] forward).

Set M(r 3) = 0 ; Fire x 3, (move K 3 [1] forward).

Set M(r 2) = 1 ; Fire x2 , (move K2 [1] backward).

Set M(s 2) = 1 ; Fire Y2, (move K2 [1] to q 3).

Set M(s 1) = 0 ; Fire y1 , (move K3[11] to q 2).

Now, K1 [1] resides on q1 9 K 3 [1] resides on q2 ' and K2 [1] re-

sides on q3, and q4 is empty. Since setting the resolution

locations to the appropriate status causes the associated

transitions to fire it is sufficient to only list the resolu-

tion location settings that will remove the token from the

head of the queue (placing it on location b2) (Ref 15:117):

Set M(rI) = 0 .

Set M(r2) = 0 .

Set M(r 3) = 0 .

Set M(s,) = 0

Now, K3 [1] resides on q1 , k2[1] resides on q2, and q3 and q4

are empty.

The formal definition of a priority-in queue must still

be stated in terms of the primitive constructs when the over-

all net definition is declared. However, the substitution of

(" the structure in Figure 15 for the net in Figure 14 would

64

I.

a a

Fig. 15 Priority-In Queue (Ref 17:20)

present a much clearer picture of a net incorporating a

priority-in queue of length four and tokens with one attri-

bute.

Summary. E-nets are characterized as marked, interpreted,

directed graphs. An E-net is composed of two sets of nodes,

transitions and locations, which are interconnected by direc-

ted arcs. Tokens are markers which can reside on the locations

(a particular location may hold at most one token). A token

may have a finite set of attributes with values assigned to

the attributes. Net operation (or execution) is reflected in

the movement of tokens among the location nodes in the net.

Tokens are moved by the "firings" of transition nodes. When

the status of the locations attached to a transition satisfy

defined conditions, the transition is enabled and subsequent-

ly fires, removing tokens from a subset of its input locations

and placing tokens on a subset of its output locations. A

transition is specified by a tuple, (s,t(a),q), where s is

the transition type, t(a) is the transition "firing" time dur-

ation, and q is a transition procedure which interprets the

action of the transition on the tokens involved in a particular

65

I

firing. A resolution location is a special location which

provides a conflict avoidance mechanism for a transition which

selects a token to be removed from (placed on) either of two

input (output) locations when the transition fires. The net-

environment interface is specified by peripheral non-resolution

locations, resolution procedures, and environment variables.

A peripheral location has only one transition connected to it

by one arc. Peripheral non-resolution locations provide an

input (output) for tokens from (to) the environment to (from)

the net. A resolution procedure is a mechanism for defining

the status of peripheral resolution location. An environment

variable is a special attribute token which represents the

status of a portion of the environment. Environment varia-

bles can be referenced by resolution procedures and referenced

and changed by a transition procedure. In the next chapter,

an E-net graph model of the DAIS will be developed and a

formal description of the graph presented.

661

- I.

III Model Construction

Prefatory Activities

Prior to the actual construction of a system model,

guidelines should beestablished which will serve to keep the

modeling effort "on track". These guidelines can often be

separated into functionally diverse groups which may be devel-

oped by distinct activities. Three activities preceded the

actual construction of an E-net model of the DAIS: a) deter-

mination of which DAIS components and/or functions to model,

b) determination of the lowest level of detail to be modeled,

and c) establishment of a set of model requirements.

There is some overlap and interdependency among these three

activities; the level of detail may be restricted or bounded

by which system functions are modeled, and some model require-

ments will be established or tailored to consider what system

functions are modeled.

What to Model. In the introduction of this report it was

stated that a model is desired which could be used for high

level analyses of proposed distributed processor avionics

computer systems. For this investigation, a two processor

configuration of the DAIS, master processor plus one remote

processor (Ref 1,24), is modeled. The distributed archi-

tecture, system control, and concurrent processing activity

(of the DAIS are of primary interest. The processors, their

67

t

-. j_-.. ..

associated BCIUs, and the data bus should be modeLed. The

Remote Terminals and other avionics components (communications

devices, weapons, altimeters, etc.) are only input and/or out-

put devices to the computer system. Therefore, they do not

need to be physically represented in the model; only the

transmission (reception) of messages to (from) these other

components from (by) the processors needs to be modeled.

System control refers to one of the major functions of

the DAIS Executive. Data bus control is another major func-

tion of the Executive. Both of these functions need to be

modeled in order to analyze system operations by using the

model. Another type of control function that is not so

obvious is the control of a processor's activity. Which task

is selected for execution on a processor depends on the task's

position in a prioritized list of tasks that are ready for ex-

ecution. Some tasks (Normal Mode Tasks) can have their execu-

tion suspended if a higher priority task becomes ready to ex-

ecute. Other tasks (Privileged Mode Tasks and Executive

actions) run to completion once their execution is begun.

Overriding the task execution function is the hardware inter-

rupt capability of the BCIU to its associated processor. Also,

the activity (i.e. utilization) of the processors and their

BCIUs should be reflected in the model, to support efforts to

analyze the impact of adding or deleting processors from a

distributed processor configuration. Finally, the interaction

of a processor with its BCIU and the differences in operation

(. between Master and Remote BCIUs should be revealed in the

68

-- --_ _ _._ _ _1_ _ _ _

_ _ _ _ _ _--- , ,_ _ _ __,_ ___ ...- _ _- "I K1 I

model, as points of major interest in a system analysis.

In summary, then, the components, functions, and activ-

ities of the DAIS to be modeled are:

1) Distributed architecture (processors, BCIUs, and Data Bus),

2) System control,

3) Data Bus control,

4) Task control,

5) BCIU interrupts to processors,

6) Task priority scheme,

7) Processing activity,

8) BCIU and Data Bus activity, and

9) Processor - BCIU interaction.

Level of Detail. The level of detail at which to model

a system depends, of course, on the intended use of the model.

The inherent capabilities of the modeling schema used may

limit the degree of detail which can be represented by a par-

ticular model type. For this investigation, a level of detail

is desired which illustrates the DAIS components, functions,

and activities listed in the previous section. This level of

detail is determined to be the task level. Tasks and Execu-

tive actions are represented by tokens, whose flow through

the E-net graph will simulate the flow of tasks in the DAIS.

Model Requirements. A set of model requirements is es-

tablished which express the desired capabilities of the E-net

model representation of the DAIS. These requirements are,

(admittedly, somewhat subjective, but they represent the intent

69

OWL

of this investigation. The model requirements are:

1) The E-net graph is a pictoral representation of the
DAIS structure.

2) The functions and activities listed in the section

"What to Model", above, are incorporated into the

graph structure or are revealed by the graph
interpretation.

3) The E-net model represents the DAIS at a "task flow"
level of detail.

4) Interpretation of the E-net graph simulates the
operation of the DAIS with respect to task flow and
the system control and bus control functions.

5) Analysis of the interpretation of the E-net graph
can be used to provide answers to questions about
DAIS performance (especially with respect to processor
utilization and bus activity).

Model Development

The guidelines provided by the prefatory activities pro-

vided a basis on which to begin the model construction. The

approach used for model construction was top-down development.

The first graph constructed represents the DAIS at the highest

level. Succeeding graphs representing successively greater

levels of detail were constructed until a level of detail was

reached which represented the flow of tasks in the DAIS.

Three graphs were constructed in all; they are presented in

the following sections in the order of their development.

For the first two graphs, only the basic E-net description is

given, since these graphs were not to be interpreted. The

first and second graphs constructed do not meet requirements

2) and 3) under "Model Requirements", above, but they do repre-

(sent the DAIS at high levels of detail and they give insight

70

V

w.w- w,

into the step-by-step method of developing the E-net graph
I

model which is the end product of this investigation.

Top Level Model. The first stage in the top-down model

development was the construction of a very high level graph

representation of the DAIS. This "top level" model is seen

in Figure 16. The nodes in the graph are defined as follows:

a, : add job to master processor queue

a2 : allocate the master processor to a job

a3 : deallocate the master processor

a4 : dispose of last job executed on master processor

a5 : place message on bus

a6 : transfer message from bus to a processor

a7 : add job to remote processor queue

a8 : allocate the remote processor to a job

a9 : deallocate the remote processor

a 1o: dispose of last job executed on remote processor

b 1 : a job is ready to execute

b 2 : master processor is allocated

b3 : master processor is deallocated

b4 : job execution is completed

b5 : master processor message awaits transmission

b6 : last job did not generae a bus message

b 7 : remote processor message awaits transmission

b 8 : the bus is busy

b9 : a message for the master processor has been received

(b1 o: a message for the remote processor has been received

71

PO0

Fc

4J

14

a0

0 0.

00
cc z

'-4

op or- 0

72

b11 : a job is ready to execute

b12: remote processor is allocated

b13 : remote processor is deallocated

b14 : job execution is completed

b1 5 : last job did not generate a bus message

Q m : priority-in queue for master processor

Qn : priority-in queue for remote processor

r 1 : choose jobs for input to master processor queue

r2 : detect bus messages

r3 : collect messages for bus transmission

r 4 : choose processor to receive message

r 5 : choose jobs for input to remote processor queue

r6 : detect bus messages.

In this top level model, the environment places jobs on

locations bi and bi1 for the master processor and remote pro-

cessor, respectively. Qm[j] and Qn[j] represent priority-in

queues of executable jobs. Jobs work their way to the head

of their queues and eventually are executed. Some jobs may

generate a bus message. Jobs which do not generate bus

messages exit the graph at nodes b5 and b1 5 . If a bus message

is generated, a token is placed on location b6 or b7 , appro-

priately. For example, if a job represented by token K is

placed on location bl, and this job needs to send the results

of its computation to the remote processor, the path followed

(by K is

bl' Qm' b 2 b4 b 6, b8, b0' b 12' Qn' b12' b14' b15

73

........

The formal definition of the graph in Figure 16 is as

follows:

E = (L,P,R,A)

R = {r ,r2 ,r3 ,r4 ,r5,r6}

P = {bl,b 5 ,bll,b1 5
} U R

L = {b2 ,b3 ,b4,b5 ,b6',b ,bb9,b9 ,bl 0 ,bl2 bi3,QmQn' U
P

A = {al,a 2 ,a3 ,a4 ,a5 ,a6 ,aTa 8,a 9,alO}

a. = (Y(r1,b9gbl,Qm) , (to(a1), tl(al)))

a2 = (J(Qmb 3 ,b2) , t(a2))

a3 = (F(b2,b3,b4) , t(a3))

a4 = (X(r2,b4 ,b5 ,b6) , (to(a 4) , tl(a4)))

a5 = (Y(r3,t5 ,t7,t8) , (to(a 5) , t1 (a5)))

a6 = (X(r4 ,b8 ,b9 ,blo) , to(a 6) , tl(a 6)))

a7 = (Y(r5 ,blo,bll,Qn) , (to(a 7) , t,(a7)))

a8 = (J(Qn,b13 b1 2) , t(a8))

a9 = (F(bl2 ,b13 ,b14) , t(ag))

alO = (X(r6 ,bl4 ,b7 ,b1 5) , (to(alo) , t.(alO)))

The graph in Figure 16 provides a very high level of

observation of the DAIS structure. The distributed architec-

ture and parallel processing capability are visible. Some

operational features and system functions and components are

not visible at this level of detail, such as BCIU operation,

BCIU interrupt capability to its processor, and the processor-

,o-BCIU programmed I/0 interface. Jobs are considered to

74

execute to completion once they are begun.

Intermediate Level Model. The next step in the modeling

process was the construction of an E-net graph of the DAIS

which represents the operation and structure of the DAIS at

a finer level of detail than that provided by the top level

model. This next step model, or intermediate level graph,

is seen in Figure 17. The nodes in this graph are defined

and the formal definition of the net is presented in

Appendix B.

The distributed architecture and parallel processing

capability are revealed in the intermediate level model of

the DAIS. BCIU operation and portions of the processor-BCIU

interface are also visible at this level of observation.

The bottom half of the figure on sheets l and 2 of Figure 17

represent the master and remote BCIUs, respectively. Sheet

3 of Figure 17 is the portion of the E-net graph which repre-

sents the data bus and its interconnections to the BCIUs and

RT (at this level, nodes b3 3 and b40 represent the bus con-

nections of all RTs and directly connected bus compatible

avionics subsystems).

The master processor executes jobs (which can represent

tasks at this level of detail) it receives at location bi and

processes asynchronous requests it receives at location b1 5.

A processing activity runs to completion unless a higher

priority activity becomes ready to execute (and works its way

(to the head of the processor queue), in which case the

75

Ri

.. .. - u

.- 4k-4

CDo

-4-

-4 - -

COU

'-4

14.

0

4
0 0
U)C

'41

00 z
0 t
4'0

CAU

CNN

04-

C
4
.

T-44

4-4

76

14

mom"

c'4,

C1-4

0
E

co o 0

5-4 '-4CN
0 0a

00

t- .I41

P40
0

E0

oc

O E
000

040

4

14

00 -4

C--4

77

4.4

00
C14

00 0

CN

I'- 00 '4-

CL

cc C

4-i4

U4.

CCu
to0

783

currently executing job is suspended. The suspended job is

fed back into the queue (b8 to b2 to Qm) and the processor

is allocated to the highest priority job in the queue. If

a job generates a bus message, then a token is placed on

location b7 after the job is executed (at this level of ob-

servation a job may only generate a message if it completes

execution, since the firing of transition a5 can only place

a token on b6 or b7). Placing tokens on b7 and b2 3 represents

PIO operations by the master and remote processors, respect-

ively.

Locations b14 and b4 1 and locations b30 and b4 2 represent

portions of the master and remote BCIUs, respectively. Locations

b4l and b4 2 receive messages from the data bus for their respect-

ive BCIUs. The BCU portion of the BCIU processes messages

from the bus and its associated processor. The BCU activity

is represented by transitions a8 and a9 for the master BCIU

and'transitions a19 and a20 for the remote BCIU. Messages to

be transmitted onto the bus are placed on locations b14 and

b30 .

Although the level of observation provided by the E-net

in Figure 17 reveals more operational and functional charac-

teristics than the top level graph does, some functions and

control aspects are still not visible. Specifically, the task

(control; bus control, and system control functions, the BCIU

interrupt capability to the processor, and the task priority

79

72.4

scheme are not visible.

Task Level Model. A task flow level of detail is repre-

sented by the E-net graph in Figure 18. The formal definition

of this net and the definitions of the nodes in the net are

presented in Appendix C.

The task level E-net graph in Figure 18 is a pictoral

representation of the DAIS. Sheets 1 and 2 of Figure 18

represent the master processer, sheets 4 and 5 represent the

remote processor, and sheet 6 represents the remote BCIU. The

upper half of sheet 3 represents the master BCIU and the lower

half represents the data bus.

One of the assumptions made during development of the

task level model (and the previous two models) is that there

is no major difference in how tasks are executed in the

master and remote processors. Any differences are in the

functions of the tasks being executed in each processor.

Another assumption is that the Master Interrupt Handler is

functionally identical to the Local Interrupt Handler, at the

task flow level of detail, with respect to how interrupts from

the BCIU are processed. Unavailability of detailed documenta-

tion on the Master Executive is the motive for these assump-

tions. The effect of these assumptions is that the portions

of the task level E-net graph representing the master and re-

mote processors are identical.

System control is provided by a collection of functions

(see page 20). Error management, configuration management,

and mass memory management were not incorporated into the

80

0
14

0 0)

00

C.- co N o

'I'I

4

0

811

Irn

I.4

0

u. C14
0
).4

N

oo N N-

54 40

Nr
I-I

0544

04 04

CIA 00
N Cui

1-4

05 ~V'~ CQ

0 .0 0
04

"-4

82)

C.,d

ciio

cai

r-I"

0.

00

co

Oa)

4t-

00

-t 0

0

-4

83

-r -

co
4 0

C.- V -4
0-. C-~ 0

4;.

C- 0)

0

0 0

'00

4.L'UI

Cd Q)

4.4

NN
'0 '0 ' '.0 4

.0 .00%
4t.

Lv.' 4.

4. 4.c0

(U84

L' 0 -

0

(1) C1
u

(V~0 41'.

41)
0

000

UINU

H4 Cv- %0%

0% 3

$44

I.A 4
030

el% co co
$4 pi

00

£o44
0

N 03 0%

N Nco
.0 ~ 03-4

£4 £4 .0 .

'.0 85

'.A0

'0 0

C.-

544

00

'.4-

C.- C-0asE

00

0 0)

N zz
Si,..

86-

DAIS configuration modeled (Ref 24:28-32). Therefore, these

functions are not incorporated into the task level E-net

graph. Control and task flow required for system synchron-

ization are incorporated into the model. The master processor

sends commands to the remote processor via the subnet inter-

connections labeled D,E,H, and I in that order.

Data bus control is represented by the interconnections of

the data bus and BCIUs and by the flow of tokens representing

tasks and signals. The PIO connection between the master

(remote) processor and the master (remote) BCIU is represented

by location b38 (b9 6). The master BCIU places commands on

the bus at location b51 and receives responses at location b58.

The remote BCIU processes commands it receives from the bus

at location b57 and places responses to commands on the bus at

location b1 1 5. Locations b52 and b5 5 represent the connection

of the RTs and other bus-compatible avionics subsystems to the

data bus.

A BCIU sends an interrupt to its processor whenever it

receives a bus message which requires executive action. The

master processor receives an interrupt whenever the master

BCIU receives a "request for services" from the remote proces-

sor. The local processor receives an interrupt whenever its

BCIU receives an asynchronous transmit or receive command.

These interrupts are received by the master and remote proces-

sors at locations b5o and b1 1 3 , respectively. An interrupt is

(processed in the model by executing an interrupt task which is

87

I L-A0BO 4k1O AIRFORCE INST OF TECH VRIOHT-PATTERSON APB ON SCHOOC-ETC F/s 9/BI A RAPH MODEL REPRESENTATION OF A DISTRIBUTED PROCESSOR COMPUTT--ETC(U)SDCC TO L A PAUUR
UNCLASSII9 AFSTf /UC/3/?-12

2 f f f f f f f f f f f f

NONEhhmhmhmhEI
,i mmomoDo

created at locations b6 and b6 4 for the master and remote

processors, respectively.

Task control and the task priority scheme are interrelated.

A task is represented by an attribute token, K[8]:

1) K(1) : 1 if an interrupt task, 0 otherwise

2) K(2) : 1 if a Normal Mode task, 0 otherwise

3) K(3) : task priority (1 is highest)

4) K(4) : processor time required, in milliseconds

5) K(5) : processor time used, in milliseconds

6) K(6) : 1 for synchronous bus command
2 for asynchronous bus command

7) K(7) : integer value representing a request for services

8) K(8) : BCIU processing time.

The position of a task (token) in a processor priority-in

queue, Qm[8] or Qp 18], is determined by the value of the task's

(token's) second attribute. All interrupt tasks have priority

1, all Priviledged Mode and executive tasks have priority 2,

and Normal Mode tasks have priority 3 thru n, where n-2 is the

number of Normal Mode tasks in the processor.

Task control is concerned with the order of execution of

tasks, the allocation and deallocation of a processor to a task,

and the thread of control from a task back through the calling

sequence to the Master Sequencer (Figure 9) or the executive.

The order of execution of tasks is controlled with the processor

queues, Qm[8] and Q p[8]. The allocation of the processors is

controlled at r-locations r5 and r2 6. When the master (remote)

88

_ _ __ _,_..

processor becomes idle (location b1 7 (b75) is empty), the task

at the head of Qm(Qp) is removed from the queue and receives

control of the processor. The allocation of the master (remote)

processor is represented by the successive firings of transi-

tions a11 and a1 2 (a52 and a53) after r (r5) is set to 0.

Deallocation'of the processors is more complicated.

Deallocation of a processor depends on the class and prior-

ity of the task currently in control of the processor (see

page 33). Once a Privileged Mode or executive task starts

executing it runs to completion. However, execution of a

Normal Mode task is suspended whenever a higher priority

task becomes executable. In the model, the master (remote)

(processor is deallocated by the successive firings of transi-

tions a17 and a1 8 (a58 and a59). The marking of r-location

r6 (r2 7) is undefined until one of two things happens. If an

interrupt is received by the master (remote) processor during

execution of a Normal Mode task, then a token is placed on

location b8 (b66), which will cause the marking of r6 (r2 7)

to be changed to 1, enabling transition a1 7 (a58). If a

Privileged Mode or executive task is executing, or if an

executing Normal Mode task is not suspended, then the normal

termination of the executing task will define the value of

M(r6)(of M(r27)) to be 0. Transition a17 (a58) then fires,

(since a token is always available on location b22 (b80).

89

I,

Processor activity is represented by a token on locations

b17 and b75 for the master and remote processors, respectively.

Tokens on these locations represent the execution of applica-

tions tasks, executive services, and interrupt processing.

The other transitions and locations in the processor portions

of the E-net model system overhead activities such as al-

location of the processor, clearing of interrupts, entering

tasks in the queues, and PIO. BCIU activity is represented

by the allocation of the BCM in the master and remote BCIUs

(locations b4 8 and b11 1 , respectively), the transmission and

reception of messages (locations b51 , b57, b58 , and bl1) ,

and the generation of interrupts (locations b50 and b113).

Interpretation of the E-net graph in Figure 18 simulates

DAIS operation. It is assumed that the net environment,

places attribute tokens (tasks) on locations b11 and b69 to

simulate the activation of executable tasks in the DAIS. It

is also assumed that the environment changes the value of

the environment variable CLOCK to represent the passage of

real time. Given an initial marking M0 for the graph, the

model is executed by firing transitions as they are enabled

and in accordance with the formal definition in Appendix C. An

example is presented in the next section.

Interpretation of the model results in the automatic

collection of some data. Locations b3, b9 , b18 , b33, b36 ,

61 67, b76, b9j, and b94 are used to collect data on

90

.

interrupts and tasks (see Appendix C for location definitions).

Other performance data can be calculated by measuring dwell

times at locations b17 , b4 8 , b7 5 , b1 1 o, Qm, Qn' and Q . In

the next section, an example of how a token (task) flows

through the graph (DAIS) is presented.

Model Validation. Validation of any model is generally

achieved by convincing oneself that the model actually

represents the structure and/or the function of the modeled

system. For a simulation model, validation is accomplished

by "exercising" the model with a "representative" (and, of

course, validated) workload model. If the performance of the

model approximates the actual system performance under the

workload that was modeled, then the model is validated. How

accurate the approximation must be for a particular validation

effort is subjective.

For this investigation, validation of the high and inter-

mediate level models was accomplished by exercising these

models in a manner similar to the example at the bottom of

page 71. It was only necessary to validate the structure of

these two models since, for this investigation, they were

only to be used as stepping stones to the task level model.

The task level model was initially validated in the same

manner as the first two models. The structure of the task

level model was validated in subsections, and then pieced

together for an overall validation effort. Validation of

the function of the model was accomplished by introducing

tokens to the net at locations b1 1 and b6 9 and then interpreting

91

... .

the model. An example of this effort is in Appendix D.

The bookkeeping involved during the graph interpretation

becomes quite tedious and prone to error as the interpretation

progresses. A more convincing validation process might involve

an automated interpretation of the model with a workload model

derived from an actual workload, but the amount of effort

required is beyond the resource limitations of this investi-

gation.

Summary

A set of guidelines was established as a basis tor the

model construction effort. A top down approach was used

during model development. Three models were constructed; the

third one represents the DAIS at a task flow level of detail.

All three models were validated with respect to their struc-

ture. The task level model was interpreted to provide a rough

validation of its function and performance. An evaluation of

the three models constructed is provided in the next chapter.

92

V

IV Evaluation Of Models

E-nets were developed as a system analysis tool (Ref 15:23).

Analysis of the net interpretation provides performance

measures of the system represented by the net. Since E-nets

are also pictoral representations of the systems they model,

it should also be possible to perform some system analysis

based on the uninterpreted graph representation of the modeled

system. An evaluation of the models constructed during this

investigation as analysis tools is presented in this chapter.

Some possible methods of analyzing the graphs are also

discussed.

Structural Analysis

All three models constructed could be used to analyze the

DAIS architecture. The interconnection of system components

is represented by the interconnection of nodes in the net.

The three models can be viewed as block diagrams of the DAIS,

at successively greater levels of detail. With the nodes de-

fined and labeled, the control and data paths between system

components are apparent. Referring to Figure 18, location b38

represents a register in the master BCIU which receives PIO

instructions from the master processor. The master BCIU is

interfaced to the data bus via the MTU which is represented

by location b5 1.

(Part of the interface between the system and its environ-

ment is represented by the peripheral locations in the net

93

4|

graphs. In Figure 18, locations b52 and b55 represent the

connection of bus-compatible avionics subsystems to the avion-

ics computer system (DAIS).

A high level representation of some DAIS system functions

is also revealed in the graph structures. Also, the break-

down of some functions into subfunctions is revealed. In

Figure 19, the overall system function is composed of the

processor/BCIU and data bus functions. The master processor/

BCIU function is composed of the processor allocation, pro-

cessor deallocation, and BCIU function. (Figure 19 could also

represent the physical composition of the system.)

With the nodes defined, the graphs represent the events

or activities occurring in the system and the conditions which

must be satisfied for the events to take place. It is

apparent, using the definitions in Appendix C for nodes r6,

a17, b1, b22 , and b23, from the graph in Figure 18 that the

master processor will be deallocated whenever the currently

executing task terminates normally, or if an interrupt occurs

during execution of a Normal Mode task.

The graph structures can be used to analyze the DAIS

structure and part of the interface between the'DAIS and its

environment. It is possible, given the node definitions, to

analyze the ordering of sequences of events. In order to

analyze the performance of the DAIS, however, it is necessary

to interpret the nets.

Cq

94

__
0

Master
Processor

Fig 17 - j
Data Bus

Fig 17 - 3Remote

Processor

Fig 17 - 2 DAIS

I (Fig. 16)

Remote Proces-
sor Interrupt,
Allocation
Fig 18 - 4

Remote
Processor PIO,
Deal location

Fig 18 - 5

Remote Processor Remote

Fig 17 -2 Fig 18C-U

(Fig. 19 Top Down Model Construction Overview

95.

/ 95

.3\

Dynamic Analysis

Examples of how to interpret E-nets are provided in

Chapters two and three. The performance measures which could

be made by interpreting each of the three models are discussed

in Chapter three. Other performance-related issues could be

studied by interpreting the nets.

If, during the interpretation of the task level net a

marking was reached in which no transition was enabled (or

would be enabled within a finite time period for the task level

net), then the net would be dead. A dead net represents a

hung-up or deadlocked system. If all interpretations of the

task level net, initialized with the same Mo, CLOCK value, and

task input times, resulted in the same terminal marking at time

tT' then the net (and the DAIS) is deterministic.

Interpretation of all three models developed is possible.

However, sets of transition procedures and resolution proce-

dures, and the location data structures of the high and inter-

mediate level nets will have to be provided before these two

nets could be interpreted. Interpretation of each net would

provide performance measures at corresponding levels of detail.

Several possible ways to interpret the nets are discussed in

the next section.

Direct Interpretation. One method of interpreting the

nets in Chapter three would be to assign an initial marking,

initialize a subset of the net's environment variables, and

(then record the changes in the net marking as transitions

become enabled and fire. An example of this method is in

96

Appendix D. Additionally, a data table could be constructed,

where each entry in the table represents a marking of the net.

Such a table (or similar method of recording data) would be

necessary to monitor the net operation when several tokens

are moving about in the net concurrently. For even a rela-

tively simple net like the high level net, the recording

effort can be substantial, and for a large, complex model,

the recording effort can be prohibitive.

Data recording associated with an interpretation of the

high level model could be done manually, although much time

would be required to simulate DAIS operation of even a few

minutes. An intermediate level net interpretation requires

a substantially greater recording effort. If attribute tokens

are used for an intermediate level net interpretation, then a

vector of n values (where n is the number of token attributes)

is associated with each token. A single row entry requires

41 columns, one for each location, in a table representing

the net markings. Additionally, a table of token values must

be maintained where each row entry corresponds to an attribute

token in the net and each column entry corresponds to an

attribute of the token. It is easily derived from the example

in Appendix D and the discussion above that to manually

record the daLa generated by a task level net interpretation

is out of the question. An alternative method of collecting

and recording the data associated with a task level net inter-

pretation is required.

97

A net interpretation could be automated. A net inter-

pretation computer program could be constructed as a main

program with calls to subprograms. The main program would

contain the logic necessary to sequence the subprogram calls.

Subprograms would implement transition procedures. A sub-

program call would only be valid if the transition was

enabled. Data recording could be done in the main program,

a common subprogram, or in each subprogram. Ideally, an

automated interpretation of the models in Chapter three

would be executed in real time on a multiple processor com-

puter system with concurrent processing capabilities.

However, not many systems like this are available. Also, the

programming effort required for a direct interpretation pro-

gram could be prohibitive or not cost-effective.

Simulation. An alternative to direct interpretation

with a computer program is simulation of the net interpreta-

tion with a computer program. Several simulation programs

exist which could conceivably be used (GASP-IV, GPSS, Q-GERT,

and SLAM are a few examples). A brief discussion of how the

GASP-IV program could be used to simulate interpretation of

the task level net follows.

The main functions performed by GASP-IV are data collec-

tion and supervisory control of the simulation. Additional

functions include statistical analyses of the data collected,

generation of inputs to the model, and report generation. A

GASP-IV model of a net in Chapter three could consist of a

98

set of queues and servers, representing locations and transi-

tions, respectively.

GASP-IV supports event-and time-driven simulations. If

enabling a transition is represented by an event, then an

event-driven simulation of a net interpretation would be

possible. GASP-IV provides and maintains up to ten files for

recording events. Input to an event file would correspond to

enabling a transition. Output from the same event file would

correspond to termination of a transition firing. Event file

entries can have several components, one of which is used to

place the entry in the file. The file above could be ordered

by transition firing times.

All simulation programs have implementation bounds on

storage for data collection and recording and on the size of

the simulation model. These restrictions may limit the use

of some simulation programs for net interpretation.

Summary

E-nets were developed as a performance analysis tool.

It is possible to analyze the structure and functional rela-

tionships of the DAIS by analyzing the nets in Chapter three.

A performance analysis requires an interpretation of the nets.

Although it would be possible to manually interpret the net

models of the DAIS, the data collection and recording effort

would be substantial even for the high level net. Possible

alternatives to manual interpretation of the nets are

automated direct interpretation and simulation.

99

WG

V Results And Conclusions

In this chapter, the results of this investigation are

presented, followed by some concluding remarks. Then some

recommendations for future work are offered.

Results

The physical end product of this investigation is a set

of three E-net graph models of the DAIS, a distributed pro-

cessor avionics computer system architecture. The three

models represent the DAIS at successively lower levels of de-

tail. The highest level net models the major components

(e.g. processor) and the lowest level net represents the DAIS

at the task flow level of observation.

It is demonstrated that a particular class of graph models,

E-nets, can be used to model a distributed computer architect-

ure. Several methods for analyzing the models constructed are

presented, including analysis of the static graph structures

and analysis of interpreted nets (dynamic graphs).

It is shown how, by using tokens (markers) in the net

graph to represent jobs (tasks) in the system mqdel, to simu-

late DAIS operation. Methods for collecting performance data

during a simulation (net interpretation) are presented.

An evaluation of the models constructed is presented.

The evaluation discusses how the models could be used to

analyze the structural, functional, and operational
(

100

lOOL

characteristics of the DAIS. The problem of collecting and

recording data during a DAIS simulation is discussed and

examples are provided.

Conclusions

The top down approach used to construct the E-net graph

models of this investigation was quite effective. The three

models produced provide three separate levels of observation

of the DAIS. The inherent modularity of E-nets aided the

construction effort, reducing the difficulty of interconnecting

subsections of a net graph as they were developed. A restric-

tion of E-nets is that the termination time of a net activity

(event) during net interpretation is fixed when the activity

is initiated. Consequently, the processor interrupt function

of the DAIS is not obvious in the graph and required the only

use of net environment variables when the model was executed.

The parallel processing capability is incorporated into

the net interpretation and the distributed architecture of

the DAIS is represented in the graph structure. Although the

interpretation of E-nets is straightforward, the bookkeeping

involved during interpretation of even a relatively simple

net can be substantial and tedious. Interpretation of any of

the E-net graphs constructed during this investigation should

be facilitated by data automation techniques.

Recommendations for Future Work

(The product of this investigation is a set of E-net

graphs which represent the DAIS computer system. The models

101

-- ~ - -- -- -- -

can be used to analyze the structure of and the functional

relationships in the DAIS. However, to analyze the per-

formance and operational characteristics of the DAIS, the net

graphs need to be interpreted (the model is executed). Work-

load models need to be developed for input to the DAIS models.

In addition to a workload model, a data automated capa-

bility needs to be developed to perform the data recording

function associated with a net interpretation. Preferably,

the entire interpretation, including the bookkeeping function,

could be automated. Two alternatives for automating the inter-

pretation of the net graphs are: a) programs could be written

which would interpret the graphs directly, or b) an existing

simulation program could be used to simulate the net inter-

pretations.

102

4Bibliography

1. AFAL-TR-74-245. Design of the Core Elements of the
Digital Avionics Information System DAIS , Volume I.
Product Report. Dallas: Texas Instruments Incorporated,
November, 1974.

2. AFAL-TR-74-245. Design of the Core Elements of the
Digital Avionics Information System (DAIS), VolumeII.
Product Report. Dallas: Texas Instruments Incorporated,
November, 1974.

3. AFAL-TR-79-1027. Digital Avionics Information System
(DAIS): Development and Demonstration. Technical Report.
Redondo Beach, California: TRW Defense and Space Systems
Group, Inc., March 1979.

4. Ferrari, Domenico. Computer Systems Performance
Evaluation. Englewood Cliffs: Prentice-Hall, Inc., 1978.

5. Gordon, Geoffrey. System Simulation (Second edition).
Englewood Cliffs: Prentice-Hall, Inc., 1978.

6. Hetzel, William C. Program Test Methods. Englewood
Cliffs: Prentice-Hall, Inc., 1973.

7. Lamont, Gary B. "Graphical and Functional Models of
Parallel Computation." Report distributed in EE 7.50,
Advanced Operating Systems. School of Engineering, Air
Force Institute of Technology, Wright-Patterson AFB, 1978.

8. MAiOOOO. DAIS Document Descriptions: Specifications,
Manuals, Plans and Drawings. Wright-Patterson AFB: DAIS
ADPO, August, 17.

9. MA201200. DAIS System Control Procedures. Wright-
Patterson AFB: DAIS ADPO, April 1979.

10. MA301300. DAIS Technical Manual For the Bus Control
Interface Unit (BCIU). Wright-Patterson AFB: DAIS ADPO,
April, 1977.

11. MA301301. DAIS Technical Manual For Remote Terminals.
Wright-Patterson AFB: DAIS ADPO, April, 1977.

12. Martin, Francis F. Computer Modeling and Simulation.
New York: John Wiley & Sons, Inc., 1968.

13. Misunas, D. "Petri Nets and Speed Independent Design,"
Communications of the ACM, 16: 474-481 (August, 1973).

103

t,

__--_ __... . _ __ 'I _ I . .. I

14. Nutt, Gary J. Evaluation Net Simulation System Reference
Manual. Department ofCmputer Science, University of
Colorado, Boulder, Colorado, April, 1974.

15. Nutt, Gary J. "The Formulation and Application of
Evaluation Nets." Ph.D. Thesis. Computer Sciences Group,
University of Washington, Seattle, Washington, July, 1972.

16. Nutt, Gary J. and Jerry Noe. "Macro E-Nets for Represen-
tation of Parallel Systems," IEEE Transactions on
Computers, C-22: 718-727 (August, 1973).

17. Nurr, Gary J. and Jerry Noe. "Some evaluation Net Macro
Structures," Computer Sciences Group, University of
Washington, Seattle, Washington, TR 73-01-07, 1973.

18. PAlOOlOl. Technical Description of the Digital Avionics
Information System (DAIS). Wright-Patterson AFB: DAIS
ADPO, February, 1978.

19. PA100203A. Demonstration and Acceptance Test Plan For
Digital Avionics Information System Missions a,8,y, and 6.
Wright-Patterson AFB: DAIS ADPO, February, 1979.

20. PA200100. DAIS Software Development Standards. Wright-
Patterson AFB: DAIS ADPO, February, 1978.

21. Peterson, James L. "Petri Nets," Computing Surveys,
9: 223-252 (September 1977).

22. Ramchandani, Chander. "Analysis of Asynchronous Concur-
rent Systems by Petri Nets." Ph.D. Thesis. Department
of Electrical Engineering, M.I.T., Cambridge,
Massachusetts, February, 1974.

23. SAlOOlOOA. System Specification for theDigital Avionics
Information System. Wright-Patterson AFB: DAIS ADPO,
July, 1977.

24. SA1001O2A. System Segment Specification for the Digital
Avionics Information System Missions 1,ay, and 6 Type A.
Wright-Patterson AFB: DAIS ADPO, December, 1978.

25. SA201302 Pt I. DAIS Mission Software Executive Specifi-
cation. Wright-Patterson AFB: DAIS ADPO, June, 1976.

26. SA201302 Pt II, Vol I. DAIS Mission Software Product
Specification: Local Executive. Wright-Patterson AFB:
DAIS ADPO, August, 1976.

27. SA201302 Pt II, Vol II. DAIS Mission Software Product
Specification: Bus Control Executive. Wright-Patterson
AFB: DAIS ADPO,--arch, 1979.

104

. • V

28. SA201302 Pt II, Vol III. DAIS Mission Software Product
Specification: Start UP/Loa-er Mass Memory Controller.
Wright-Patterson AFB: DAIS ADPO, unpublished.

29. SA201302 Pt II, Vol IV. DAIS Mission Software Product
Specification: Monitor, Back-Up, Recovery Reconfigura-
tion. Wright-Patterson AFB: DAIS ADPO, unpublished.

30. SA301300B. Prime Item Development Specification For
DAIS Bus Control Interface Unit. Wright-Patterson AFB:
DAIS ADPO, March, 1976.

31. SA321200. Prime Item Development Specification For DAIS
Digital, Comm-and/Response, Time Division Multiplexing
Data Bus. Wright-Patterson AFB: DAIS ADPO, February,

32. Svobodova, Liba. Computer Performance Measurement and
Evaluation Methods: Analysis and Applications. New York:
American Elsevier Publishing Company, Inc., 1978.

33. Vandever, Woodrow H., Jr. "The DAIS Executive: An
Introduction," Unpublished report. Intermetrics, Incor-
porated, Dayton Facility, Dayton, Ohio, 1978.

34. Zervos, Cristian Radu and Keki B. Irani. "Colored Petri
Nets: Their Properties and Applications," Interim report.
Department of Electrical Engineering, University of
Michigan, Ann Arbor, Michigan, August, 1977.

105

SV

Appendix A: BNF Notation

The Backus-Naur-Form (BNF) notation used to describe a

transition procedure (Ref 15:65-66) is described using the

following example:

<macro> ::= <micro> <macro><op><micro>

<micro> ::= <basic> <basic><micro>

<basic> ::= a b I c

<op> ::= + I *

The constructs <macro>,<micro>,<op>, and <basic> are non-

terminal symbols. The symbols a,b,c,+, and * are terminal sy-

bols. The symbols I and ::= are meta symbols. The symbol

is interpreted to mean "replace with". Whatever is on the left

side of ::= may be replaced by whatever is on the right side.

The symbol I indicates a choice or option. That is, <op> may

be replaced by + or * . Using the rules for replacement ill-

ustrated in the above example, the following are legal con-

structions made up of terminal symbols:

ab + ab

aba *bcb + cac

For the notation used in the transition procedure definition,

::= and are meta symbols, anything enclosed with (and inclu-

ding for notation purposes) the symbol pair < > is a non-

terminal symbol, and all other symbols are terminal symbols.

10
106

. ... ,, . , ,

Appendix B Definition of the Intermediate

Level E-Net Graph of the DAIS

The nodes in the E-net graph of Figure 17 are defined as

follows:

a1 : pass activated or suspended job to remote processor
queue

a2 : Add job or asynchronous request to master processor
queue

a3 : allocate the master processor

a4 : deallocate the master processor

a 5 : pass bus messages to master BCIU queue

a6 : feed suspended jobs back to master processor queue

a7: add bus messages and processor commands to master
BCIU queue

a8 : allocate BCM of master BCIU

a9 : deallocate BCM of master BCIU

alO: route messages for transmission to data bus

a11 : route asynchronous requests to master processor

a1 2 : pass activated job or suspended job to remote
processor queue

a13: add job or asynchronous command to remote processor
queue

a14 : allocate the remote processor

a1 5 : deallocate the remote processor

a1 6 : pass bus messages to the remote BCIU queue

a1 7 : feed suspended jobs back to remote processor queue

a1 8 : add bus messages and processor commands to remote
BCIU queue

107 ,

- Il.

a1 9 : Allocate BCM of remote BCIU

a2 0 : deallocate BCM of remote BCIU

a21: route messages for transmission to data bus

a2 2 : route asynchronous commands to remote processor

a2 3 : pass bus messages from processors to bus

a2 4 : pass RT transmissions and processor messages to
data bus

a2 5 : allocate the data bus

a2 6 : deallocate the data bus

a2 7 : route messages to RT or processor/BCIU

a2 8 : route messages to master or remote BCIU

b 1 : a job is ready to execute

b 2 : an executable job requests the master processor

b 3 : master processor is allocated

b4 : master processor is deallocated

b 5 :job execution terminated

b 6 :a terminated job did not generate a bus message

b 7 :bus message needs to be transmitted

b 8 :terminated job was suspended

b 9 :terminated job completed execution

b10o: BCM of master BCIU allocated

b11 : BCM of master BCIU deallocated

b1 2 : message needs to be routed

b1 3 : message was received from'bus

b 1 4 : message is ready for transmission

b1 5 : asynchronous request needs to be processed

b1 6 : received message requires no further processing

16:,

108 1.

-VW

b7 a job is ready to execute

b1 8 : an executable job requests the remote processor

b1 g: remote processor is allocated

b20 : remote processor is deallocated

b2 1 : job execution terminated

b22 : terminated job did not generate a bus message

b23 : bus message needs to be transmitted

b 24: terminated job was suspended

b2 5 : terminated job completed execution

b26 : BCM of remote BCIU allocated

b27 : BCM of remote BCIU is deallocated

b 28: message needs to be routed

b29 : message was received from bus

b 30 : message is ready for transmission

b 31 : asynchronous command needs to he processed

b32 : received message requires no further action

b 33 : message from RT

b34 : message from a processor

b3 5 : data bus requested

b36 : data bus busy

b3 7 : data bus idle

b38 : message transmission complete

b39 : message is for a processor

b0 message to RT

b4 1 : message is to master processor

(b4 2 : message is to remote processor

109

PW,

QM : master processor queue

Qn : master BCIU queue

Qp : remote processor queue

QS : remote BCIU queue

r1 : choose jobs for master processor

r 2 : choose jobs and requests for input to master

processor queue

r3: detect bus messages

r4 : detect job complete or suspended

r5 : choose bus messages for master BCIU queue

r6 : detect messages to be transmitted

r7 : determine if message is asynchronous request

r8 : choose jobs for remote processor

r9 : choose jobs and requests for input to remote
processor queue

r 1O: detect bus messages

r11 : detect job complete or suspended

r12 : choose bus messages for remote BCIU queue

r 13: detect messages to be transmitted

r14 : determine if message is asynchronous command

r1 S: choose processor messages to be placed on bus

r 16: choose processor and RT messages to be placed on bus

r 17: detect messages to RT

r18: determine if message is to master or remote processor

110

WE

The formal definition of the net in Figure 17 is:

E = (L,P,R,A)

R =frl,r2,r3,r4,r5 ,r6,r7 ,r8,r9,r l0 ,r1 ,r 12,r 13,r 14,r15

r 16,r 17,r 18)

P ={bl,b9 ,b 16,b1 7,b 25,b 32 3b 33,b40} U R

L fb2q b 8bl ,.. .,b 15b 18 .b 24b26 .,31

b31..b 401 U P

a1 (Y(r,b 13 ,b 2) ,(t 0(a1),t 1(a 1)))

a2 = (Y(r2,b2,b 15,QM) ,(t 0(a2),t1 (a2)))

a3 =(J(Qm~b 4 ,b 3) , t(a 3))

a4 = (F(b 3,b5 lb 4) , t(a 4))

a5 = MXr 3,b 5 1b 6 1b7) ,(t 0(a5) , t1(a 5)))

a6 = (Xr 4,b 6 ,b8,b9) ,(t 0(a6), t1 (a6)))

a7 =(Y(r 5 b Pb 41,Qn) ,(t 0(a 7) , ia7)

a9 (F(bl03b 12,bl1) ,t(ag))

a1 0 = (Xr 6,b 12 ,b 13,b 14) ,(t 0(a10) , ~lo)

al1 = (X(r7,b 13 ,b 15,b16) ,(t 0(a11) ,lal)

a 12 (Y(.r8 ,b 17,b 24 ,b18) ,(t 0(a 12) ,ia2)

a = (Y(r93b 181b 31 ,Q) (t 0(a 13) t, a13)

a1 4 = (J(Q~b 20)bl9) , t(a 14))

a15 = (F(bl9 ,b 21 ,b 20) , t(a15))

a16 = (X(rl0 ,b2 l,b 2 2, b23) ,(t 0 (al6), tl(al6)))

a 1 7 =(X(rll,b 2 2 ,b 24,b 2 5) ,(t 0 (al7) tla7)

a18 = MYr 12 ,b 2 3 b4 2 'Qs) ,(t 0 (a 18) 2 tl(a 1 8)))

a1 9 = (J(Qs,b 2 7 ,b 2 6) ,t(a 19))

a20 = (F(b 26,b28,b 2 7) ,t(a 20))

a21 = (X (r 1 3,b28,b 29 ,b 30) , (t (a 2 1) t , 1)

a22 = (Xr 14 ,b 2 9,b 31,b 32) , (t0 (a 2 2) ,la2)

a2 3 = MYr 15 2b 14 ,b 30 ,b 34) , (t0 (a 23) t , 23)

a24 = MYr 1 6,b 33 ,b 34 ,b3 5) , (t0 (a2 4) ,la24)

a2 5 = (Jb 3 5 b 3 7 ,b 3 6) , t(a 25))

a26 = MFb 36,b 38 ,b 3 7) , t(a 26))

a2 7 = (X(rl7,b 38,b39,b 40) , (t0 (a 2 7) , tia7)

a2 8 = MXr 18 2b 3 93 b41,b4 2) , (t0 (a 28) , t 1 (a28)))

112

Appendix C Definition of the Task Level

E-Net Graph of the DAIS

The definitions of the nodes in the E-net graph in Figure

18 are as follows:

a 1: route master processor interrupts

a2 : collect interrupt flags

a 3 : pass interrupts to master processor queue

a4 : absorb interrupt flags

a5 : route interrupt flags

a6 : collect interrupt falgs which occur during
execution of non-Normal Mode tasks

a7 : absorb interupt flags which occur during
execution of non-Normal Mode tasks

a8 : pass activated tasks and suspended Normal Mode tasks
to the master processor queue

a9 : pass executable tasks to master processor queue

a1O: add interrupts and tasks to master processor queue

a11 remove task from head of master processor queue

a12: allocate the master processor

a1 3 : project time at which currently executing task would
end if it runs to completion

a1 4 : absorb end-of-task flags

a15: pass end-of-task flags

a1 6 : create end-of-task flags

a1 7 : pass end-of-task flags and interrupts

a1 8 : deallocate the master processor

113

a1 g: separate Normal Mode tasks from other tasks

a2 0 : route suspended Normal Mode tasks back to master
processor queue

a21 : separate BCIU related tasks from other non-Normal
Mode tasks

a2 2: separate BCIU related tasks from other Normal Mode
tasks

a2 3 : collect non-BCIU related non-Normal Mode tasks

a24 : absorb non-BCIU related non-Normal Mode tasks

a2 5 : collect non-BCIU related, completed Normal Mode tasks

a2 6 : absorb non-BCIU related, completed Normal Mode tasks

a2 7 : collect BCIU related tasks

a2 8 : route BCIU tasks to the master BCIU queue

a2 9 : route messages from bus to BCM in master BCIU

a30: collect tokens signalling end of BCM activity

a31: pass messages from bus to BCM in master BCIU

a3 2 : collect end-of-action flags for BCM in master BCIU

a3 3 : un-busy the BCM in the master BCIU

34: add BCIU operations to master BCIU queue

a3 5 : allocate the BCM in the master BCIU

a 36: process the BCIU operation

a37: route outgoing messages to bus, incoming asynchron-
ous requests to the master processor

a38 : collect bus messages from remote BCIU and RT

a 39: messages placed on the bus

a40: route messages off bus

a41 : route messages to BCIUs

(a4 2 : route remote processor interrupts

114

I,

a4 3 : collect interrupt flags

a4 4 : pass interrupts to remote processor

a4 5 : absorb interrupt flags

a4 6 : route interrupt flags

a4 7 : collect interrupt flags which occur during
execution of non-Normal Mode tasks

a4 8 : absorb interrupt flags which occur during
execution of non-Normal Mode tasks

a4 9 : pass activated tasks and suspended Normal Mode
tasks to the remote processor queue

a50: pass executable tasks to remote processor queue

a51 : add interrupts and tasks to remote processor queue

a5 2 : remove task from head of remote processor queue

a53: allocate the remote processor

a54 : project time at which currently executing task
would end if it runs to completion

a5 5 : absorb end-of-task flags

a5 6 : pass end-of-task flags

a57: create end-of-task flags

a5 8 : pass end-of-task flags and interrupts

a59: deallocate the remote processor

a60 : separate Normal Mode tasks from other tasks

a61 : route suspended Normal Mode tasks back to remote
processor queue

a62: separate BCIU related tasks from other non-Normal
Mode tasks

a63 : separate BCIU related tasks from other Normal Mode
tasks

a64 : separate BCIU related tasks from other Normal Mode
tasks

115

a6 5 : absorb non-BCIU related non-Normal Mode tasks

a6 6 : collect non-BCIU related, completed Normal Mode tasks

a6 7 : absorb non-BCIU related, completed Normal Mode tasks

a68 : collect BCIU related tasks

a69 : route BCIU related tasks to the remote BCIU queue

a70 : pass response or message to response

a71 : pass remote processor request

a72 : pass remote processor request or remote BCIU response

a7 3 : update remote processor/BCIU status

a74 : pass updated status or response + status

a7 5 : pass response + status to bus and clear status in
remote BCIU

a76 : pass current status

a7 7 : collect end of action flags for the BCM in the remote
BCIU

a78 : un-busy the BCM in the remote BCIU

a7 9 : pass BCIU tasks to BCM when BCM not busy

a8 0 : allocate the BCM in the remote BCIU

a81 : route messages to bus

a8 2 : pass asynchronous commands to remote processor

b 1 : interrupt received

b 2 : an interrupt needs to be processed

b3 : current count of interrupts

b4 : updated count of interrupts

b5 : interrupt flag

b 6 : task to process an interrupt

b7 : interrupt occurred during execution of
(Priviledged Mode or executive task

116

PA

b8 : interrupt occurred during execution of
a Normal Mode rask

b9 : current count on interrupts when executing task
not a Normal Mode task

b1 o: updated count of interrupts when executing task
not a Normal Mode task

bll: activated task ready to execute

b12: activated task or suspended task requests master
processor

b13: executable task requests master processor

b14: task at head of queue bumped by entry into queue
of higher priority task

b1 5 : highest priority task in queue is selected for
execution

b1 6 : copy of task in master processor

b17: master processor allocated

b18 : current count of allocation of the master processor

b1 9 : updated count of allocation of the master processor

b20 : updated count of completed tasks in master processor

b2l : current count of completed tasks in master processor

b22 : enabling token used when executing task runs to
completion

b2 3: stop execution of executing task

b 24: task just executed by master processor

b2 5 : completed Priviledged Mode or executive task

b 26: Normal Mode task was executing

b27: Normal Mode task ran to completion

b28: Normal Mode task was suspended

b2 9 : task just completed was not BCIU related

b : task just completed was BCIU related

117

|1

_____f _______

b3 1: Normal Mode task just completed generated a BCIUoperation

b 32 : Normal Mode task just completed did not generate a
BCIU operation

b 33 : current count of completed, non-BCIU related,
Priviledged Mode and executive tasks in the master
processor

b34 : updated count of completed, non-BCIU related,
Priviledged Mode and executive tasks in the master
processor

b3 5 : updated count of completed, non-BCIU related, Normal
Mode tasks in the master processor

b 36: current count of completed, non-BCIU related,
Normal Mode tasks in the master processor

b37: BCIU operation needs to be processed

b 38: a bus message needs to be processed

b39 : interrupt has been processed by the master processor
and BCM in master BCIU can be unbusied

b40: status response received from remote device does not
require processing

b41: status response received from remote device requires
further processing

b42: status response received or master processor
interrupt has been handled so BCM can be unbusied

b4 3 : response to last command is received

b44: service request from remote device

b4 5 : the BCM in the master BCIU can be unbusied

b46 : the BCM in the master BCIU is not busy

b 47: a master BCIU operation requires processing

b48: the BCM in the master BCIU is busy

b 49: a master BCIU operation is executing

b50 a remote device response requires processing by
(the master processor

118

I,

b:51 a message needs to be transmitted on bus by the
master BCIU

b52: an RT or the remote processor needs to be transmitted

on the bus

b5 3 : a message needs to be transmitted on the bus

b 54: a message is on the bus

b55 : the message is for an RT

b56 : the message is for a processor

b57 : the message is for the remote processor

b58 : the message is for the master processor

b59 : interrupt received

b60: an interrupt needs to be processed

b61 : current count of interrupts

b6 2 : updated count of interrupts

b63: interrupt flag

b64: task to process an interrupt

b65: non-transmit interrupt occurred during execution
of Priviledged mode or executive task

b66: interrupt occurred during execution of a Normal
Mode task

b 67: current count of interrupts during execution of
a non-Normal Mode task

b68: updated count of interrupts during execution of
a non-Normal Mode task

b69: activated task ready to execute

b70: activated task or suspended task requests remote
processor

b7l : executable task requests remote processor

b72 : task at head of queue bumped by entry into queue
of higher priority task

119

b94 : current count of completed, non-BCIU related,Normal Mode tasks in the remote processor

b9 5 : BCIU operation needs to be processed

b96 : a bus message needs to be processed

b9 7 : interrupt has been processed by the remote processorand BCM in the remote BCIU can be unbusied

b98 : signal that command was received or a message

b99 : remote processor request or flag

b lo0: status update or message

biol: current status

b10 2 : updated status or message + status

b1o3: status response or message + status

b10 4 : updated status

b105s: cleared status

b1o6 : end of BCM activity or interrupt has been processed
by remote processor, so BCM in the remote BCIU can
be unbusied

b10 7 : acknowledge receipt of command from bus if BCIU
is busy

b1o8: a command received from bus needs to be processed

b10 9 : copy of message being processed by BCM in the remote
BCIU

b110o: the BCM in the remote BCIU is busy

bill: message is ready to be transmitted

b112: bus command has been processed

b113 : the remote processor needs to take action in
response to the received bus command

b114 : the received command requires no further action

b115s: status response or message + status

Qm[j]: priority-in queue for master processor

Qn[J]: queue for master BCIU

120

-4 -

Q p[j]: priority-in queue for remote processor

rI1 : detect if executing task is a Normal Mode task

r2 : choose activated task or suspended task

r3 : choose executable task

r4 : choose task for input to master processor queue

r5 : detect master processor idle or arrival to the
queue of a task with a higher priority than the
task at the head of the queue

r6 : detect normal termination of executing task or
detect an interrupt during execution of a Normal
Mode task

r7 : detect if task just executed was Normal Mode

r8 : detect if Normal Mode task execution was suspended

r9 : detect if executed Priviledged Mode or executive
task generated a BCIU operation

rlO: detect if executed Normal Mode task generated a
BCIU operation

r1l : choose master BCIU operations

r12: detect if the master BCIU operation is to unbusythe BCM subsequent to processing a master processor
interrupt

r13: detect a request for service

r14: choose completion of interrupt processing or status
response with a request for service

r15 : choose response to unbusy the BCM

r16: choose master processor generated or bus generated
inputs to BCIU queue

r17: detect activity requiring the master processor

choose RT or remote processor transmission onto
data bus

r19: choose messages for transmission on data bus

r20: route messages to RT

121

a I

r21 : route messages to remote or master processor

r22 : detect if executing task is a Normal Mode task

r23: choose activated task or suspended task

*r24: choose executable task

r2 5 : choose task for input to remote processor queue

r26 : detect remote processor idle or arrival to the
queue of a task with a higher priority than the
task at the head of the queue

r27: detect normal termination of executing task or
an interrupt during execution of a Normal Mode task

r 28: detect if task just executed was Normal Mode

r29 : detect if Normal Mode task execution was suspended

r30: detect if executed Priviledged Mode or executive
task generated a BCIU operation

r31: detect if executed Normal Mode task generated a
BCIU operation

'32: choose remote BCIU operations

r33: detect if the remote BCIU operation is to unbusy
the BCM subsequent to processing a remote processor
interrupt

r34: choose message + response or response

r35: choose remote BCIU response or remote processor
request

r 36: detect updated status or response

r37: choose cleared status or updated status

r 38: detect end of message processing or end of interrupt
processing by the remote processor

*39 : detect if BCM in remote BCIU is busy

r40 : detect if an input from the bus requires further
processing by the remote processor

(

~122

Some shorthand notation is used in the formal definition

of the task level E-net graph. The symbol - in a transition

declaration is used whenever the function of the transition

is as follows:

1) T - transition: The transition firing moves the
unaltered token on the input location
to the output location.

2) F - transition: When the transition fired, identical
copies of the token on the input
location are placed on both output
locations.

3) J - transition: When the transition fires, the
attributes of the token placed on the
output location are obtained by sum-
ming the corresponding attributes of
the tokens on the two input locations.

4) X - transition: When the transition fires, the token
placed on the selected output location
is the token from the input location.

5) Y - transition: When the transition fires, the token
placed on the output location is the
token from the selected input location.

When an attribute token K[m] is transferred from location

bi(m] to b.[m] without changing the values of any attribute,

the transfer is denoted

M(bjm]):= M(bim]).

When any attribute values are changed during the transfer (as

specified by the transition procedure), the transfer is denoted

M(b (n)) := M(bi(n)) , 1 < n < m

for each token attribute value changed. Only the attribute

123

O$

-" - -- INH JI

values which are changed are individually notated in the

transition declaration. T is the shorthand notation for the

boolean value "true" when T appears in a transition procedure.

Time is in milliseconds.

The formal definition of the E-net in Figure 18 is:

E = (L,P,R,A)

R = {rl,r2,...,r40

P = {bul[1], b52[8], b5 5[8], b6 9 1 U R

L = {bl[l], b2[8], b3[1], b4111, b5, b6[8], b7 , b8 , bg[1],

blo [1], b 11[8],..., b 171[8], b 18.... b23, b 241[8],

b38 18], b39, b40, b41[8], b42, b4 3 , b44[8], b45, b46,

b47188], b48, b49[8],..., b5818]1, b59[1], b60[(81,

b61(1], b 62[1], b6 3 , b 6418], b65, b66, b 671I1, b6811),

b6 9 [81,..., b7 5 [8], b76 ,..., b8 1, b82 181,..., b9 6 18],

b97) b 9818]1,..., b 10518]1, b10 6 , b 1071[8], b,08o81]

bl09 [8] , bjj O , bll
[8] , bi12188], bi13188, b,14) U P

A = {a1 , a2 ,..., a8 2)

aI = (F(b50 [8], b1[1, b2[81), 0,

[T - (M(b2 [8]) := M(b50 8]);

M(b1 [1]) =]

a2 = (J(b3 [1], b[11, b41]), 0, -)

(

124

a3 = (F(b2 181, b5 , b6 18]), O,

[rT (M(b5) := 1;

M(b6[8] := M(b2[8]))])

a4 = (T(b 4 [l], b3[l]), 0, -)

a5 = (X(rl, b5 , b7 , b8) , (0,0) , -)

a6 = (J(b 9 [l], b7 , blol]) , 0,

[T - (M(b 10 (a)) := M(bg(1)) + 1)])

a7 = (T(b 10 [1], b9 [1]) , O, -)

a8 = (Y(r2 , bll[8], b2 8[8], b1 2[8]) , (0,0) , -)

a9 = (Y(r 3 , b1 218], b1 4 18], b1 3[81) , (0,0) , -)

a10 = (Y(r4 , b6 18], b1 3 18], Qm[8]) , (0,0) -)

all= (X(r 5, Qm[8], b1 5 18], b1 4 18]) , (0,0) , -)

a1 2 = (F(b 1 5[8], b 1 6 [8], b1 7[8]) , 0, -)

a1 3 = (J(b 18 , b1 6 18], b19) , 0,

[T - (M(b 1 9) := 1;

END TASK(1) := CLOCK + M(b16(4)))])

a1 4 = (T(bl9 , b18) , 0, -)

a1 5 = (T(b 2 0, b2 1) , 0, -)

a 1 6 = (F(b 2 1, b2 0 , b2 2) , 0, -)

a17 = (Y(r6 , b2 2, b8, b23) , (0,0) -)

125

t

a1 8 = (J(b2 3, b1 7[8], b24 [8]) , (0,0)

[(END TASK(1) > CLOCK)

(M(b24 (4)) END TASK(l) - CLOCK;

M(b24 (5)) := M(b1 7 (5)) + M(b1 7 (4))

-M(b 24(4));

M(b2 4 (i)) M(bl7 (i)) I

i = 1,2,3,6,7,8):

T - (M(b24 (5)) M(b1 7 (4)) + M(b17(5)) ;

M(b24 (4)) 0;

M(b24 (i)) :=M(b1(i)),

= 1,2,3,6,7,8)])

a1 9 = (X(r7 , b24 18], b2 5 [8, b26 [8]) , (0,0) ,

a20 = (X(r8, b2 6 [8, b2 7[81], b28 181) , (0,0) , -)

a 21 = (X(r9 , b2 5[8], b29[81, b30 [8]) , (0,0) , -)

a2 2 = (X(r1 o, b2 7[8], b31[8], b32 18]) , (0,0) , -)

a2 3 = (J(b33[8], b29 18], b34 [8]) , 0, -)

a24 = (T(b34 [8], b3 3[8]) , 0, -)

a2 5 = (J(b32 [8], b36[81, b3 5[8]) , 0, -)

a2 6 = (T(b3 5[8], b36 [8]) , 0, -)

a2 7 = (Y(rll, b30 [8], b31 ['8], b37 18]) , (0,0) , -)

a2 8 = (X(r1 2 , b37[8, b38 181, b39) , (0,0) 1

[M(r.2) = 0 (M(b38 [8]) := M(b3 7 [8])):

T . (M(b39) := 1)])

126

7;t

a2 9 = (X(r1 3, b5 7 18], b40 [8], b4 1 [8]) , (0,O)

[M(r 1 3) = 0 (M(b 40) := 1):

T - (M(b4 1 [8]) := M(b57[8]))])

a 30 =(Y(rl4, b3 9 , b4 0 , b4 2) , (0,0) -)

a3 1 = (F(b4 1[8], b4 3, b4 4 [8]) , 0,

[T + (M(b4 3) 1;

M(b44[81) M(b4l18]))])

a 3 2 = (Y(r 1 5, b4 2 , b4 3 , b4 5) 5 (0,0) ,

a3 3 = (J(b4 8 , b4 5, b4 6) , 0, -)

a34 = (Y(r1 6, b4 4 18], b 3 8[8], Qn[8]) , (0,0) , -)

a3 5 = (J(b4 6, Qn[8], b4 7 [8]) , O,

[T - (M(b4 7 181) := M(b4 6 18]))])

a3 6 = (F(b4 7[8], b48, b4 9[8]) , 0,

[T - (M(b4 9[8]) := M(b4 7 18]);

M(b 4 8) := 1)])

a3 7 = (X(rl7 , b4 9[81, b5 18], b 5 118]) , (1,2)

[M(r7) = o (M(b 50(1)) := 1;

M(b50 (2)) 0;

M(b50 (3)) 1;

M(b 50 (4)) := 2;

M(b5 0 (5)) := 0);

M(b50 (6)) :M(b49(6));

127

M(b50 (7)) M(b49(7)) ;

M(b50 (8)) M(b4 9 (8)) + 1):

T - (M(b 5 0 (6)) := M(b 4 9 (6));

M(b 5 0 (8)) 2;

M(b 5 0 (i)) 0,

i = 1,2,3,4,5,7)])

a 3 8 = (Y(r1 8 , b11518], b52[8], b 5 318]) , (0,0) , -)

a3 9 = (Y(r1 9, b53[8], b5118], b54[81) , (0,0) ,

a4 0 = (X(r 2 0 , b54(8], b55[8), b5 6 18]) , (0,0) ,

a4 1 = (X (r2 1 , b5 6[8], b5718], b5 8 18]) , (0,0) ,-)

a4 2 = (F(b1 1 3 [8]1, b5 9 [111, b 6 0 [8]) , 0,

[T - (M(b 5 9 [l]) 1;

M(b 6 0 [8]) := 1131[8))])

a4 3 = (J(b6 1 [1], b59[I], b 6 2 [I]), O, -)

a4 4 = (F(b 6 6[8], b6 3, b64[18]) , 0,

[T - (M(b 6 3) 1;

M(b 6 4[8]) :=M(B60[8]))])

a4 5 = (T(b6 2 [1], b6 1 11]) , O, -)

a4 6 = (X(r 2 2 ,b6 3 , b65 , b66) , 0, -)

a4 7 = (J(b6 7(1], b 65, b68[i], O,

[T (M(b 68(l)) :=M(b 67(l)) + 1)])

128

" 9

L I I III I ii iii.
_

a4 8 = (T(b6 8[l], b6 7 11]) , 0, -)

a4 9 = (Y)r2 3, b69[8], b8 6 (8], b70 [(8]) , (O,0) , -)

a50 = (Y(r24 , b70 [8], b7 2 [8], b71 [8]) , (0,0), -)

a5 1 = (Y(r2 5 , b64 18], b71 [8], Qp (8]) , (0,0) , -)

a52 = (X(r26, QP(81, b7 3(8], b72 (8]) , (0,0) , -)

a5 3 = (F(b7 3 18],b 74 18], b7 5 18]) , 0, -)

a54 = (J(b7 6, b 7 4 181, b77) , 0,

[T - (MCb 17) := 1;

END TASK(2) := CLOCK + M(b74(4)))])

a55 = (T(b77 , b7 6) , 0, -)

a56 = (T(b 78 b79) , 0, -)

a57 = (F(b7 9 , b78 , b80) 0, -)

a5 8 = (Y(r 2 7 , bo80 , b 6 6 , b 8 1) , (0,0) ,1

a59 = (J(b81 , b75 [8], b8 2 (8]) , (0,0)

[(END TASK(2) > CLOCK)

(M(b8 2 (4)) := END TASK(2) - CLOCK;

M(b8 2 (5)) := M(b75 (5)) + M(b7 7 (4))

-M(b8 2 (4));

M(b8 2 (i)) := M(b75 (i)) I

i = 1,2,3,6,7,8):

T * (M(b8 2 (5)) := M(b75(4)) + M(b75 (5));

M(b8 2 (4)) := 0;

M(b8 2 (i)) := M(b75(i))

1 1,2,3,6,7,8)])

129

a60 = (X(r28, b82[81, b83[8), b84 [81) , (0,0) , -

a61 = (X(r29, b84[81, b85 [8], b86[81) , (0,0) , -

a62 =(X(r 30 , b83[8], b871:81, b88 [8]) , (0,0) , -

a63 = (Xr 3 l, b85 [81, b89E8], b9018)) , (0,0) , -

a64 = (J(b91[8], b87[81, b92[83) , 0, -

a65 = (T(b42(8], b91 181) I 0, -)

a66 =(J(b90[81, b94[83, b93[83) I 0, -

a67 =(T(b 9 3[81, b94 383), 0, -).

a68 (Y(r32, b88 [81, b89[8], b95[81) ,(0,0) ,-

a69 (X(r33, b95 181, b96[81, b97) 2 (0,0)

[M(r33) =0 -" (M(b96[8]) : ~9[1)

T - (M(b97) := 1)3)

a70 = (Y(r34 , bl0 7[81, blll[83, b98[8]) , (0,0)

[M(bl07 181) 0 (M(b98(7)) :=1;

M(b98(i)) :=M(b 107(i))

T -(M(b 98(8)) := ll(8)

M(b98(i)) :=0 , 1 1 7)])

871, (F(b96[81, r38, b99r81) , 0,

[T - (M(r38) := 1;

I4(b99(7)) := 9(7)

I4(Ig(i)) :=0 1 1,..., 6,8)])

130

a72 = (Y(R3 5, b99[8], b98[8], b100 [8]) , (0,0) , -)

a7 3 = (J(blo0 [8], blol[8], bo10 2 8]) , 0, -)

a74 = (X(r36 , b10 2 (8], b10 3181, b104 [8]) , (0,0) , -)

a7 5 = (F(b10 3[8], b,1 5[8], b10 5[8]) , O,

IT - (M(b10 5 (i)) O, 1 i 8;

M(b1 15 [8]) M(b10 3 18]))])

a76 = (Y(r3 7 , b10 5[8], b10 4[8], b101 [8]) , (0,O) , -)

a77 = (Y(r38 , b9 7 , b,1 4 , b10 6) , 0, -)

a7 8 = (J(b10 6 , b1l O , r39) , 0, -)

a79 = (X(r39, b5 7 18], b1 0 7 [8], bo108 8]) , (0,O) , -)

a80 = (F(b10 8[8], blo9 [8], b110) , 0,

[T - (M(b110) := 1;

M(b109 [81) := M(b1 8 18])])

a8 l = (F(b109[8], blll[8], b11 2[8]) , 0,

IT * (M(b111 (8)) M(b o9(8));

M(b11 1 (i)) := 0 , 1 < 1 7;

M(b1 12 (8)) := M(b109 (8)) + 2;

M(bl12(i):= M(b109 (8)) , 1 i 7)])

131

ft ~,:

0

a82 = (X(r4 0 , b,1 2 1', b1 13(8], b,14) , (0,0)

[M(r40) = 0 (M(b114) := 1):

T - (M(b113 (1)) 1;

M(b1 1 3 (3)) 1;

M(b11 3 (4)) 1;

M(b11 3 (8)) M(b112M);

M(b11 3(i)) 0 , i = 2,5,6,7)])

= {END TASK[2] , CLOCK)

= (V(r),..., v(r40)}

f(r 1 = r 1 : M(b 17(2)) 1 + M(r) 1:

T + M(r1) 0]

T(r2) = r 2 : [T M(r 2) 11

(r 3) = r3 : [T - M(r 3) := 1]

y(r4) = r4 : ET - M(r4) := 0]

T(r5) = r5 : [M(Qm-i (3)) < M(Qm(3))

M(r5) := 1:

M(b 1 7[8]) L 0 M(r 5) 0]

Y(r6) = [M(b8) 1 I M(r 6) := 1:

((M(b 17 18]) 4 0) ((END TASK(l) CLOCK)

(M(b 1 7 (2)) - 1 M(b 1 7 (3))

M(QW(3)))) M(r6) := 0]

(

~132

Y(r7) r7 :[M(b 24 (2)) 1 - M(r7) := 1:

T - M(r7) := 0]

y(r8) r8 :[M(b 26 (4)) 0 - M(r8) := 0:

T - M(r8) i

,(r r9 :rM(b25 (6)) > 0 M(b25(1)) = 1

M(r9) 1:

T - M(r9) := 0]

Y(rlO0 rlO :[M(b 2 7 (6)) > 0 M(b 2 7 (1)) = 1

+ M(r1 o) := 0:

T - M(r 10) := 1]

Y(rl 11 r11 :[T M(r11) := 0]

,Y(r12) r1 2 :[M(b 3 7 (1)) = 1 M(r1 2) := 1:

T - M(r1 2) := 0]

y(r1 3) 13 [M(b58 (7)) > 0 - M(r1 3) := 1:

T + M(r1 3) 0]

(r14) r r14 : [T + M(r14) := 0]

Y(r15) = 15: IT M(r 15) := 01

Y(r) = r : [T M(r) := 1]16 16 " 16

y(r1 7) = r17: (M(b4 9 (6)) > 6 - M(r17) :f 1:

T M(r17) := 0]

(r = : [T M M(r18) := O]

133

I _____II____.__.__

Y(r9= r19 :[T . M(r19) := 0]

y(r20) = r20 :[T M(r20) := 01

T(r21) = r2 1 :[M(b 56 (6)) > 0 M(b5 6 (7)) = 0

M(r2 1) := 0:

T M(r21) := 1]

T(r22) = r2 2 : [M(b 7 5 (2)) = 1 M(r2 2) := 1:

T . M(r22) := 0]

(r 23) = r2 3 :[T . M(r2 3) := 1]

F(r24) = r24 :[T M(r24) 11

Y(r25) = r2 5 :[T . M(r2 5) := 01

T(r26) = r26 :[M(Qp-l(3)) < M(Q p(3))

4 M(r2 6) := 1:

M(b7 5[8) 0 M(r26) := 0)

(r 27) = r2 7 :[M(b 66) = 1 M(r27) := 1:

((M(b 1 7[8]) 0 0) ((END TASK(2) & CLOCK)

(M(b75 (2)) 1 M(b17 (3))

M(Q p (3)))) M(r27) :O

T(r28) = r2 8 :[M(b 8 2 (2)) = 1 ' M(r28) := 1:

T - M(r28) := 0"

(r29) i= r2 9 :[M(b 84 (4)) = 0 - M(r29) := 0:

T * M(r29) := 1]

134

3)= r30 : [M(b83 (6) > 0 M(b 83(1))=1

M(r 3 0) 1

T -M(r 30) : 0]

T~ 1)= r 31 :[M(b85(6)) > 0 M(b85(1))=1

M(r 31): 0:

T - M(r3l) 1]

Tr2)= r32 :[T - M(r32) 0]

Tr33 =r 33 :[M(b 95(1)) = 1 . M(r 33: 1

T - M(r33) 01

T~ 4)= r 34 :[T - M(r34): 01

T~3)= r35 :(T - M(r35) 01

T~3)= r3 7 :[T - M(r37) :=01

'(r 38) = r 38 :[T -1 M(r38) :=01

T~4)= r40 :[M(b,12 (6)) > 1 -. M(r40): 0:

T M(r40) :=11

135

Appendix D: Token Flow in the

Task Level E-Net Graph of the DAIS

An interpretation of the E-net graph in Figure 18 is

begun by assigning an initial marking, MO , to the net and

initializing the environment variable CLOCK to zero. It is

assumed that the net environment will: a) update CLOCK when

no transitions are enabled and b) place tokens on locations

b 1and b 69. Let MObe defined as follows:

M(b 3) = M(b9) = M(b6l) = M(b67) = Lt1], L(1) =0;

M(b 33) =M(b 36) = M(b91) = M(b94) = M(bl01) =J1811,

where J(i) =0 , 1 i :S 8 ;

M(b1 8) = M(b 21) = M(b22) = M(b 46) = M(b 76) =M(b 7 9)

= M(b 80) = M(r 39) = 1 ;M(r36) = 0

M(b. 0 ,1 Sj 5115 ,j 3, 9, 18, 21, 22, 33,

36, 46, 61, 67, 76,

79, 80, 91, 94, 101;

M(r)= 1 t 40 36, 39

Given M0and CLOCK = 0 ,let the environment place token

K[8] on location bill where

K(1) = K(2) =K(5) =K(7) =K(8) =0

K(3) =2

K(4) -4

K(6)= - I

136~

tv1.

The following net operations will take place:

a8 fires, M(b12) = K(8] , M(b11) = 0 ;

a9 fires, M(b13) = K[8] , M(b12) = 0

a10 fires, M(Qm) = K[8] , M(b1 3) = 0 ;

a11 fires, M(b1 5) = K[8] , M(Qm) = 0

a12 fires, M(b1 6) = M(b1 7) = K[8] , M(b1 5) = 0

a13 fires, M(b19) = K[81 , M(b16) M(b1 8) 0

a14 fires, M(b1 8) = K[8] , M(b1 9) 0

CLOCK = 4

a17 fires, M(b2 2) = 0 , M(b2 3) = 1

a16 fires, M(b22) = M(b20) = I , M(b2 1) = 0

a15 fires, M(b2 1) = 1 , M(b20) = 0

a18 fires, M(b23) = 0 , M(b1 7) =0

K(1) = K(2) = K(4) = K(7) = K(8) = 0

K(3) = 2, K(5) = 4, K(6) = 1,

M(b2 3) = "updated" K[8] ;

a19 fires, M(b2 5) = K[8] , M(b 24) = 0

a21 fires, M(0) = K(8] , M(b2 5) = 0

a2 7 fires, M(b3 7) = K[8] , M(b30) - 0

137

.
[

7
I .

a2 8 fires, M(b38) = K[8] , M(b3 7) = 0 ;

a34 fires, M(Qn) = K[8] M(b38) 0 ;

a35 fires, M(b4 7) = K[8] , M(Qn) = 0 , M(b4 6) = 0

CLOCK = 6

a36 fires, M(b4 7) = 0 , M(b4 8) 1

K(1) = K(2) =K(4) = K(7) =0

K(3) = K(8) = 2 , K(5) = 4 ,K(6)

M(b4 9) = "updated" K[8] ;

a3 7 fires, M(b4 9) = 0 , K(6) = 1 , K(8) = 2

K(1) = K(2) K(3) = K(4) = K(5) = K(7) = 0

M(b51) = "updated" K[8]

a39 fires, M(b54) = K[8] , M(b51) = 0 ;

a40 fires, M(b56) = K ,8 , M(b54) = 0 ;

*41 fires, M(b5 7) = K[8] , M(b56) = 0 ;

a79 fires, M(b10 8) = K[8] , M(b5 7) = 0 M(r41) = 0

a80 fires, M(blo9) = K[8] , M(bljO) = 1 , M(b,0 8) = 0

a81 fires, M(bll 2) = K[8] , M(b10 9) = 0

K'(i) 0 1 7, '8 2;

M(bll) = K'[81

a70 fires, M(b98) = KA[8] , M(b111) = 0

a72 fires, M(bloO) = K[8] , M(b98) = O

a73 fires, M(b10 2) = K-[8] , M(bloO) = M(b1o1) = 0 ;

j138

• - * . k
• 1

-9.a

a7 4 fires, M(blo3) = K'[8] , M(b10 2) = 0

a7 5 fires, M(b1 15) = K'[8] , M(b10 3) = 0

M(b10 5 (i)) = 0 , 1 - i : 8

a7 6 fires, M(b101) = M(b10 5) , M(b10 5) = 0

a38 fires, M(b53) = K081 , M(b 1 5) = 0

a39 fires, M(b54) = K'[81 , M(b5 3) = 0

a40 fires, M(b56) = K'[8] , M(b54) = 0

a4 1 fires, M(b 58) = K'[81 , M(b 56) = 0

a29 fires, M(b40) = 1 , M(b58) = 0

a30 fires, M(b4 2) = 1 , M(b4 2) = 0

a32 fires, M(b4 5) = 1 , M(b4 2) = 0

a33 fires, M(b4 6) 1 , M(b4 5) = M(b4 8) = 0 ;

CLOCK = 6

a82 fires, M(b11 4) = 1 , M(b11 2) = 0

a77 fires, M(b10 6) = 1 , M(b11 4) = 0

a78 fires, M(r39) = 1 , M(b10 6) = 0 .

The net is now inactive until the environment places another

token on b or b6 9. The net marking now is identical to MO -

139____________________I
' I.

,~~

Vita

Lieutenant Leslie A. Palmer was born April 23, 1949. After

graduating from high school, Lt Palmer enlisted in the Navy, serving

six years. He then attended the University of Texas at Austin and

received a B.A. in Computer Science, magna cum laude. He was

commissioned in the Air Force in May of 1978, and received a direct

assignment to the Air Force Institute of Technology. He is a member

of the IEEE Computer Society and president of the student chapter of

the ACM at AFIT. Lt Palmer is married to the former Linda Alice Kneen

of Belvidere, Vermont. They have one daughter, Heather Marie.

140o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dals.Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GC*/9E/70-12
4. TITLE (and Subtitle),. S, TYPE OF REPORT & PERIOD COVERED

A GRAPH MODEL 'EP ENTATION OF A DISTRIBUTED M. S. Thesis
P]ROCESSOR CCMPUTER SYSTEM 6. PERFORM;NG O-AG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Leslie A. Palmer, 2 Lt, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Air Force Institute of Technology (AFIT/EN) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Decaiber, 1979
13. NUMBER OF PAGES

147
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Approved fcr-pibl, release; IAW AFR 190-17

JOSEPH P. HIPPS, Ma, -USAF
Director of Public A'ff irs

19. KEY WORDS (Continue on reverse side it necessary and identify by block number)

Qm uter modeling
Graph models
Simulation
omputer systems analysis

20. ABSTRACT (Continue on reverse side it neceseery ad identify by block number)

Three evaluation net graph models of the Digital Avionics Information
System(DAIS) were constructed. The three models represent three increas-
ingly lwer levels of detail; the third model represents the DAIS at a
task flow level of detail. The models are evaluated as analysis tools.
Methods are presented for analyzing the DAIS structure and performance
and examples are given. The biggest problem associated with a performance
analysis using evaluation nets is the recording of data collected during

DD I jAs 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Enteed)

&p

,. r _ , " . ' - i l ..- - .. .5 -

